不同缘条宽度复合材料C型柱轴向压缩吸能特性

牟浩蕾 刘兴炎 刘冰 解江 冯振宇

牟浩蕾,刘兴炎,刘冰,等. 不同缘条宽度复合材料C型柱轴向压缩吸能特性[J]. 航空材料学报,2023,43(6):107-116 doi: 10.11868/j.issn.1005-5053.2023.000095
引用本文: 牟浩蕾,刘兴炎,刘冰,等. 不同缘条宽度复合材料C型柱轴向压缩吸能特性[J]. 航空材料学报,2023,43(6):107-116 doi: 10.11868/j.issn.1005-5053.2023.000095
MOU Haolei,LIU Xingyan,LIU Bing,et al. Energy-absorption characteristics of composite C-channels with different flange widths under axial compression[J]. Journal of Aeronautical Materials,2023,43(6):107-116 doi: 10.11868/j.issn.1005-5053.2023.000095
Citation: MOU Haolei,LIU Xingyan,LIU Bing,et al. Energy-absorption characteristics of composite C-channels with different flange widths under axial compression[J]. Journal of Aeronautical Materials,2023,43(6):107-116 doi: 10.11868/j.issn.1005-5053.2023.000095

不同缘条宽度复合材料C型柱轴向压缩吸能特性

doi: 10.11868/j.issn.1005-5053.2023.000095
基金项目: 天津市应用基础研究多元投入基金项目(21JCYBJC00690)
详细信息
    通讯作者:

    牟浩蕾(1987—),男,博士,副研究员,研究方向为飞行器适航技术,联系地址:天津市东丽区津北公路2898号(300300),E-mail:mhl589@163.com

    冯振宇(1966—),男,博士,教授,研究方向为飞行器适航技术,联系地址:天津市东丽区津北公路2898号(300300),E-mail:caucstructure@163.com

  • 中图分类号: V229+.7

Energy-absorption characteristics of composite C-channels with different flange widths under axial compression

  • 摘要: 针对不同缘条宽度的复合材料薄壁C型柱开展准静态轴向压缩实验,通过CT扫描分析其轴向压缩失效模式及破坏机理,利用吸能特性评估参数分析不同缘条宽度对C型柱轴向压缩吸能特性的影响。建立复合材料C型柱单层壳模型与多层壳模型,通过对比轴向压缩仿真与实验获得的失效模式、载荷-位移曲线以及吸能特性评估参数,来验证模型有效性。结果表明:缘条宽度对C型柱轴向压缩失效模式和吸能特性的影响较大,缘条宽度为25 mm和30 mm的C型柱在轴向压缩载荷作用下能够以稳态渐进的形式发生失效,且吸能特性较好;C型柱多层壳模型仿真获得的平均压缩载荷、总吸能及比吸能偏差在5%以内,单层壳模型仿真获得的平均压缩载荷、总吸能及比吸能偏差在8%以内,多层壳模型轴向压缩仿真精度更高。

     

  • 图  1  C型柱几何尺寸示意图

    Figure  1.  Geometry dimension of C-channel

    图  2  有限元模型  (a)单层壳模型;(b)多层壳模型

    Figure  2.  Finite element model  (a)single-layer shell model;(b)multi-layer shell model

    图  3  F20试件CT扫描图  (a)螺栓孔周围区域;(b)螺栓孔处的横截面;(c)三个纵截面

    Figure  3.  CT scan image of F20 specimen  (a)area around bolt holes;(b)cross section at bolt holes;(c)three longitudinal sections

    图  4  F25、F30试件CT扫描图  (a)F25;(b)F30;(1)三个纵截面;(2)正面

    Figure  4.  CT scan images of F25 and F30 specimen  (a)F25;(b)F30;(1)three longitudinal sections;(2)front section

    图  5  载荷-位移曲线

    Figure  5.  Load-displacement curves

    图  6  多层壳模型仿真与实验载荷-位移曲线对比  (a)F20;(b)F25;(c)F30

    Figure  6.  Comparison of simulation and experiment load-displacement curves of multi-layer model (a)F20;(b)F25;(c)F30

    图  7  仿真与实验失效形貌对比  (a)F20;(b)F25;(c)F30;(1)实验;(2)仿真

    Figure  7.  Comparison of simulation and experiment failure morphologies (a)F20;(b)F25;(c)F30;(1)experiment;(2)simulation

    图  8  F25试件模拟仿真失效过程

    Figure  8.  F25 specimen simulation failure process

    图  9  单层壳模型仿真与实验载荷-位移曲线对比  (a)F20;(b)F25;(c)F30

    Figure  9.  Comparison of simulation and experiment load-displacement curves of mono-layer model (a)F20;(b)F25;(c)F30

    表  1  USN15000性能参数

    Table  1.   USN15000 performance parameters

    Density/(g·cm−3 Poisson’s ratio ν12 0° tensile modulus/GPa 0° tensile strength/MPa
    1.5 0.3 134 2158
    0° compressive strength/MPa 90º tensile modulus/GPa 90º tensile strength/MPa 90º compression modulus/GPa
    1000 8.3 42 9
    90º compressive strength/MPa ±45º in-plane shear modulus/GPa ±45º in-plane shear strength/MPa
    172 3.8 75
    下载: 导出CSV

    表  2  MAT54模型参数

    Table  2.   MAT54 model parameters

    RO, density/(kg·mm−3 EA, Young’s modulus-longitudinal direction/GPa EB, Young’s modulus - transverse direction/GPa PRBA, Poisson’s ratio GAB, shear modulus ab/GPa
    1.5×10−6 134 8.3 1.86×10−2 3.8
    GBC, shear modulus bc/GPa GCA, shear modulus ca/GPa XC, longitudinal compressive strength/GPa XT, longitudinal tensile strength/GPa YC, transverse compressive strength/GPa
    3.8 3.8 1 2.158 0.182
    YT, transverse tensile strength/GPa SC, shear strength/GPa CRIT, failure criterion DFAILM, maximum tensile/compressive strain of the matrix DFAILS, maximum tensorial shear strain
    0.042 0.075 54 0.3 0.03
    DFAILT, maximum strain for fiber tension DFAILC, maximum strain for fiber compression ALPH, nonlinear term shear stress parameter SOFT, softening reduction factor for material strength in crash front elements FBRT, fiber tensile strength softening factor
    0.020405 -0.2 0.1 0.8 0.8
    YCFAC, reduction factor for compressive fiber strength after matrix compressive failure BETA, weighting factor for shear term in tensile fiber mode TFAIL, time step size criteria for element deletion/ms
    2 0.5 1×10−6
    下载: 导出CSV

    表  3  MAT20模型参数

    Table  3.   MAT20 model parameters

    RO, density /
    (kg·mm−3
    E, Young’s
    modulus /GPa
    PR,
    Poisson’s
    ratio
    CMO, center of
    mass constraint
    option
    CON1, constraint for
    displacement in X and Y
    directions
    CON2, constraint for
    rotation in XY,and
    Z directions
    7.8×10−6 210 0.3 1 4 7
    下载: 导出CSV

    表  4  MAT100模型参数

    Table  4.   MAT100 model parameters

    RO, density /
    (kg·mm−3
    E, Young’s
    modulus /GPa
    PR,
    Poisson’s
    ratio
    SIGY,
    yield
    stress/GPa
    DT, time step size
    for mass
    scaling /ms
    NRR, axial force
    resultant/kN
    NRS, radial force
    resultant/kN
    7.8×10−6 210 0.3 0.6 −6×10−5 100 100
    下载: 导出CSV

    表  5  层间模型参数

    Table  5.   Inter-layer model parameters

    NFLS, normal failure stress SFLS, shear failure stress PARAM, positive activation power index
    criterion; negative activation B-K criterion
    0.1 0.1 0.2
    ETANEN, normal energy release rate ERATES, shear energy release rate CT2CN, the ratio of the tangential stiffness to
    the normal stiffness
    4.7×10−4 0.002 1
    CN, normal stiffness
    1
    下载: 导出CSV

    表  6  C型柱吸能特性参数

    Table  6.   Parameters of C-channels energy-absorption

    Sample Fmax/kN Fmean/kN
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F20 31.1 32.0 31.6 0.5 1.6% 9.5 10.1 9.8 0.3 3.1%
    Sample EA/J ES/(J·g−1
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F20 915.9 1017.9 966.9 51 5.3% 25.4 28.3 26.9 1.4 5.2%
    Sample Fmax/kN Fmean/kN
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F25 34.1 34.3 34.2 0.1 0.3% 10.8 10.2 10.5 0.3 2.9%
    Sample EA/J ES/(J·g−1
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F25 1279.9 1253.8 1266.9 13.0 1.0% 21.9 23.2 22.6 0.7 2.9%
    Sample Fmax/kN Fmean/kN
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F30 36.5 33.6 35.1 1.5 4.3% 11.6 10.8 11.2 0.4 3.6%
    Sample EA/J ES/(J·g−1
    Test 1 Test 2 Avg SD CV Test 1 Test 2 Avg SD CV
    F30 1390.7 1327.2 1359.0 31.8 2.3% 25.8 26.8 26.3 0.5 1.9%
    下载: 导出CSV

    表  7  轴向压缩仿真结果与实验结果

    Table  7.   Axial compression simulation results and experimental results

    Sample Fmax/kN Fmean/kN
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F20 31.6 30.4 3.8% 32.5 2.8% 9.8 9.9 1.0% 9.6 2.0%
    Sample EA/J ES/(J·g−1
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F20 966.9 952.5 1.5% 960.9 0.6% 26.9 26.5 1.5% 26.7 0.7%
    Sample Fmax/kN Fmean/kN
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F25 34.2 33.0 3.5% 32.9 3.8% 10.5 10.1 3.8% 10.1 3.8%
    Sample EA/J ES/(J·g−1
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F25 1266.9 1260.8 0.5% 1284.7 1.4% 22.6 23.3 3.1% 23.7 4.9%
    Sample Fmax/kN Fmean/kN
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F30 35.1 32.7 6.8% 32.5 7.4% 11.2 10.7 4.5% 11.9 6.2%
    Sample EA/J ES/(J·g−1
    Avg Multi-layer Error Single-layer Error Avg Multi-layer Error Single-layer Error
    F30 1359.0 1321.0 2.8% 1460.8 7.5% 26.3 26.7 1.5% 27.1 3.0%
    下载: 导出CSV
  • [1] MOU H L,XIE J,FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures:an overview[J]. Progress in Aerospace Sciences,2020,119:1-22.
    [2] MAMALIS A G,ROBINSON M,MANOLAKOS D E,et al. Crashworthy capability of composite material structures[J]. Composite Structures,1997,37(2):109-134. doi: 10.1016/S0263-8223(97)80005-0
    [3] FARLEY G L,JONES R M. Energy-absorption capability of composite tubes and beams[R]. Washington DC:NASA,1989.
    [4] HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology,1991,40(4):377-421. doi: 10.1016/0266-3538(91)90031-J
    [5] PALANIVELU S,PAEPEGEM W V,DEGRIECK J,et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam,Part I:Central delamination and triggering modelling[J]. Polymer Testing,2010,29(6):729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [6] JIANG H Y,REN Y R,GAO B H. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures,2017,119:531-543. doi: 10.1016/j.tws.2017.07.004
    [7] MASAHITO U,SHUNSUKE A,TAKANORI K. Progressive crushing of a unidirectional CFRP plate with V-shaped trigger[J]. Advanced Composite Materials,2015,24(1):85-95. doi: 10.1080/09243046.2014.882540
    [8] ASSAEE H,ROUZEGAR J,SAEEDI F,et al. Axial splitting of composite columns with different cross sections[J]. Thin-Walled Structures,2016,99:109-118. doi: 10.1016/j.tws.2015.11.012
    [9] PIRMOHAMMAD S,ESMAEILMARDASHTI S. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads[J]. Thin-Walled Structures,2016,108:291-304. doi: 10.1016/j.tws.2016.08.023
    [10] 程群峰,许亚洪,廖建伟,等. 引发机制对复合材料波形梁吸能性能的影响及其破坏形貌分析[J]. 复合材料学报,2008(1):161-167. doi: 10.3321/j.issn:1000-3851.2008.01.027

    CHEN Q F,XU Y H,LIAO JW,et al. The Influence of initiation mechanism on the energy absorption performance of composite waveform beams and analysis of their failure morphology[J]. Acta Materiae Compositae Sinica,2008(1):161-167. doi: 10.3321/j.issn:1000-3851.2008.01.027
    [11] SIVAKUMAR P,WIM V P,JORIS D,et al. Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures[J]. Polymer Testing,2010,29(3):381-396. doi: 10.1016/j.polymertesting.2010.01.003
    [12] FERABOLI P,SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplanes[R]. Washington DC:JAMS,2013.
    [13] DEEPAK S. Crashworthy design and analysis of aircraft structures[D]. Philadelphia:Drexel University,2013.
    [14] 解江,张雪晗,宋山山,等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报,2018,35(12):3261-3270.

    XIE J,ZHANG X H,SONG S S,et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression[J]. Acta Materiae Compositae Sinica,2018,35(12):3261-3270.
    [15] 解江,宋山山,宋东方,等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报,2019,40(2):127-139.

    XIE J,SONG S S,SONG D F,et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica,2019,40(2):127-139.
    [16] RICCIO A,SAPUTO S,SELLITTO A,et al. On the crashworthiness behaviour of a composite fuselage subfloor component[J]. Composite Structures,2019,234:1-14.
    [17] OSTLER D,BLESSING E,PERL M,et al. A building block approach for crashworthiness testing of composites[C]. Charlotte:JAMS 2019 Technical Review,2019.
    [18] 解江,宋山山,牟浩蕾,等. 典型螺栓连接CFRP薄壁C型柱轴压失效行为:试验及数值模拟[J]. 复合材料学报,2021,38(10):3361-3372.

    XIE J,SONG S S,MOU H L,LIU B,FENG Z Y. Axial compression failure behavior of typical bolted CFRP thin-walled C-channels:experimental and numerical simulation[J]. Acta Materiae Compositae Sinica,2021,38(10):3361-3372.
    [19] 冯振宇,解江,李恒晖,等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报,2019,40(2):115-126.

    FENG Z Y,XIE J,LI H H,et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica,2019,40(2):115-126.
    [20] 冯振宇,程坤,赵一帆,等. 运输类飞机典型货舱地板下部结构冲击吸能特性研究[J]. 航空学报,2019,40(9):208-220.

    FENG Z Y,CHEN K,ZHAO Y F,et al. Study on impact energy absorption characteristics of the lower structure of typical cargo floor of transportation aircraft[J]. Acta Aeronautica et Astronautica Sinica,2019,40(9):208-220.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  29
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-08-31
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。