TC17和TC4合金锻件的动态响应及绝热剪切行为

陈钰浩 闵小华 张海洋 戴进财 周轶群

陈钰浩, 闵小华, 张海洋, 戴进财, 周轶群. TC17和TC4合金锻件的动态响应及绝热剪切行为[J]. 航空材料学报, 2023, 43(5): 39-49. doi: 10.11868/j.issn.1005-5053.2023.000105
引用本文: 陈钰浩, 闵小华, 张海洋, 戴进财, 周轶群. TC17和TC4合金锻件的动态响应及绝热剪切行为[J]. 航空材料学报, 2023, 43(5): 39-49. doi: 10.11868/j.issn.1005-5053.2023.000105
CHEN Yuhao, MIN Xiaohua, ZHANG Haiyang, DAI Jincai, ZHOU Yiqun. Dynamic responses and adiabatic shear behaviors of TC17 and TC4 alloy forgings[J]. Journal of Aeronautical Materials, 2023, 43(5): 39-49. doi: 10.11868/j.issn.1005-5053.2023.000105
Citation: CHEN Yuhao, MIN Xiaohua, ZHANG Haiyang, DAI Jincai, ZHOU Yiqun. Dynamic responses and adiabatic shear behaviors of TC17 and TC4 alloy forgings[J]. Journal of Aeronautical Materials, 2023, 43(5): 39-49. doi: 10.11868/j.issn.1005-5053.2023.000105

TC17和TC4合金锻件的动态响应及绝热剪切行为

doi: 10.11868/j.issn.1005-5053.2023.000105
基金项目: 辽宁省航空发动机冲击动力学重点实验室开放基金项目(JC36021050017);国家自然科学基金项目(52071051)
详细信息
    通讯作者:

    闵小华(1974—),男,博士,教授,主要从事高性能钛合金研究,联系地址:辽宁省大连市大连理工大学材料科学与工程学院(116024),E-mail: minxiaohua@dlut.edu.cn

  • 中图分类号: TG146.2

Dynamic responses and adiabatic shear behaviors of TC17 and TC4 alloy forgings

  • 摘要: 利用SHPB装置研究高应变速率下TC17和TC4合金锻件的动态力学性能,并利用OM、SEM和EBSD分析两种合金的绝热剪切行为。结果表明:随着应变速率的增加,两种合金的强度均呈现出升高趋势,表现出应变速率强化效应;与TC17合金相比,TC4合金在相同应变速率下具有更大的塑性应变和动态吸收能;TC17合金经β锻造后获得网篮组织,板条状α相和残余β相形成了大量的相界面,增加了绝热剪切带(ASB)的形成位置,且ASB在扩展过程中容易出现分叉现象;TC4合金经α+β锻造后具有双态组织,等轴状初生α相具有较好的延展性,提高了合金的动态塑性变形能力,合金中排列较规则的片层状次生α相导致相界面减少,ASB的数目较少且难以分叉;在动态压缩中断条件下,TC17合金中ASB的萌生时刻早,萌生孕育能低;TC17合金的绝热剪切敏感性高于TC4合金,且两种合金的绝热剪切敏感性均随着应变速率增加而升高。

     

  • 图  1  两种合金在不同应变速率下的真应力-应变曲线以及压缩样品的宏观图  (a)TC17;(b)TC4;(1)真应力-应变曲线;(2)压缩样品宏观图

    Figure  1.  True stress-strain curves of two kinds of alloy at different strain rates and macro-photographs of compressed samples  (a)TC17;(b)TC4;(1)true stress-strain curves;(2)macro-photographs of compressed samples

    图  2  TC17和TC4合金  (a)不同应变速率下的强度;(b)不同应变速率下的塑性应变

    Figure  2.  TC17 and TC4 alloys  (a)strengths at different strain rates;(b)plastic strains at different strain rates

    图  3  动态吸收能随应变速率的变化

    Figure  3.  Variations of dynamic absorbed energy with strain rates

    图  4  TC17合金在2000 s−1下变形组织OM和SEM图  (a)试样全貌;(b)ASB形貌;(c)微裂纹形貌;(d)分叉ASB形貌

    Figure  4.  OM and SEM images of deformation microstructures in TC17 alloy at 2000 s−1  (a)full view of specimen;(b)morphology of ASB;(c)morphology of micro crack;(d)morphology of bifurcated ASB

    图  5  TC4合金在2000 s−1下变形组织OM和SEM图  (a)试样全貌;(b)ASB形貌;(c)微孔和微裂纹形貌

    Figure  5.  OM and SEM images of deformation microstructures in TC4 alloy at 2000 s−1  (a)full view of specimen;(b)morphology of ASB;(c)morphology of voids and micro cracks

    图  6  两种合金在2000 s−1下变形组织的EBSD图  (a)TC17;(b)TC4;(1)反极图;(2)相图;(3)kernal平均取向差图

    Figure  6.  EBSD maps of deformation microstructures of two kinds of alloy at 2000 s−1  (a)TC17;(b)TC4;(1)IPF maps;(2)phase maps;(3)KAM maps

    图  7  两种合金在不同高度限位环下的真应力-应变曲线以及压缩样品的宏观图  (a)TC17;(b)TC4;(1)真应力-应变曲线;(2)压缩样品宏观图

    Figure  7.  True stress-strain curves of two kinds of alloy under different height limit rings and macro-photographs of compressed samples  (a)TC17;(b)TC4;(1)true stress-strain curves;(2)macro-photographs of compressed samples

    图  8  TC17合金在不同真应变下变形组织的OM和SEM图  (a)0.09;(b)0.14;(c)0.16;(1)试样全貌;(2)低倍变形组织及绝热剪切带;(3)高倍变形组织及绝热剪切带

    Figure  8.  OM and SEM images of deformation microstructures in TC17 alloy at different true strains  (a)0.09;(b)0.14;(c)0.16;(1)full view of specimen;(2)low deformation microstructures and ASB;(3)high deformation microstructures and ASB

    图  9  TC4合金在不同真应变下试样纵截面变形组织 (a)0.18;(b)0.22;(c)0.24;(1)试样全貌;(2)低倍变形组织及绝热剪切带;(3)高倍变形组织及绝热剪切带

    Figure  9.  Deformation microstructures of longitudinal-section in TC4 alloy at different true strains  (a)0.18;(b)0.22;(c)0.24;(1)full view of specimen;(2)low deformation microstructures and ASB;(3)high deformation microstructures and ASB

    图  10  两种合金在不同应变速率下的真应力-时间曲线  (a)TC17;(b)TC4

    Figure  10.  True stress-time curves of two kinds of alloy at different strain rates  (a)TC17;(b)TC4

    表  1  TC17和TC4合金在2000 s−1下绝热剪切带萌生的临界应变、萌生时刻和萌生孕育能

    Table  1.   Critical strain(εi), initiation time(ti)and localization energy(Ei)of ASBs in TC17 and TC4 alloys at 2000 s−1

    AlloyStrain rate/s−1εiti/μsEi /(J·cm-3
    TC1720000.1382.3171
    TC420000.19122272
    下载: 导出CSV
  • [1] ZHANG X S,CHEN Y J,HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences,2018,97:22-34. doi: 10.1016/j.paerosci.2018.01.001
    [2] FU Y Z,GAO H,WANG X P,et al. Machining the integral impeller and blisk of aero-engines:a review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering,2017,30(3):528-543. doi: 10.1007/s10033-017-0123-3
    [3] 蔡建明,田丰,刘东,等. 600 ℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程,2018,46(5):36-43. doi: 10.11868/j.issn.1001-4381.2018.000004

    CAI J M,TIAN F,LIU D,et al. Research progress in manufacturing technology of 600 °C high temperature titanium alloy dual property blisk forging[J]. Journal of Materials Engineering,2018,46(5):36-43. doi: 10.11868/j.issn.1001-4381.2018.000004
    [4] 马铁军,史栋刚,张勇,等. TC4+TC17线性摩擦焊接头的微观组织与力学性能[J]. 航空材料学报,2009,29(4):33-37. doi: 10.3969/j.issn.1005-5053.2009.04.007

    MA T J,SHI D G,ZHANG Y,et al. Mechanical properties and microstructure of linear friction welded TC4+TC17 joint[J]. Journal of Aeronautical Materials,2009,29(4):33-37. doi: 10.3969/j.issn.1005-5053.2009.04.007
    [5] NAKAI M,NIINOMI M,LIU H H,et al. Suppression of grain boundary α formation by addition of silicon in a near-β titanium alloy[J]. Materials Transactions,2019,60(9):1749-1754. doi: 10.2320/matertrans.ME201920
    [6] AHAMD A,ALI A,AWAN G H,et al. Role of equiaxed primary alpha (α׳) and mechanical properties of Ti-6Al-4V Alloy[J]. Key Engineering Materials,2012,510/511:420-428. doi: 10.4028/www.scientific.net/KEM.510-511.420
    [7] 陈钰浩,闵小华,张海洋,等. 应变速率对TC17和TC4钛合金锻件力学性能的影响[J]. 航空材料学报,2023,43(3):49-59. doi: 10.11868/j.issn.1005-5053.2022.000187

    CHEN Y H,MIN X H,ZHANG H Y,et al. Effect of strain rate on mechanical properties in TC17 and TC4 alloy forgings[J]. Journal of Aeronautical Materials,2023,43(3):49-59. doi: 10.11868/j.issn.1005-5053.2022.000187
    [8] XU J W,ZENG W D,ZHOU D D,et al. Influence of alpha/beta processing on fracture toughness for a two-phase titanium alloy[J]. Materials Science and Engineering:A,2018,731:85-92. doi: 10.1016/j.msea.2018.06.035
    [9] WU Z H,KOU H C,TANG L Y,et al. Microstructural effects on the high-cycle fatigue and fracture behaviors of Ti-6Al-4V alloy[J]. Engineering Fracture Mechanics,2020,235:107129. doi: 10.1016/j.engfracmech.2020.107129
    [10] SIDDIQUE F,LI F G,YIN J C,et al. Constitutive analysis on deformation behavior of XF1700 ultra-high strength low alloy steel in perceptive of adiabatic temperature rise and strain[J]. Journal of Materials Engineering and Performance,2023,32(4):1721-1736. doi: 10.1007/s11665-022-07237-x
    [11] WANG Y B,ZENG W D,SUN X,et al. The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures[J]. Materials Science and Engineering:A,2016,677:325-331. doi: 10.1016/j.msea.2016.09.071
    [12] HAO F,DU Y X,WANG W Y,et al. Effect of high strain rates on adiabatic shear bands evolution and mechanical performance of dual-phase Ti alloy[J]. Frontiers in Materials,2022,8:808244. doi: 10.3389/fmats.2021.808244
    [13] 黄斌,任维佳,张艳敏,等. 魏氏组织TC17钛合金绝热剪切带(ASB)的组织与织构[J]. 稀有金属材料与工程,2018,47(9):2705-2710.

    HUANG B,REN W J,ZHANG Y M,et al. Microstructure and texture of adiabatic shear band(ASB)of TC17 titanium alloy with widmanstatten structure[J]. Rare Metal Materials and Engineering,2018,47(9):2705-2710.
    [14] 陈伟,章环,牟娟,等. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报,2022,58(10):1271-1280.

    CHEN W,ZHANG H,MOU J,et al. Effects of microstructure and strain rate on dynamic mechanical properties and adiabatic shear sand of TC4 alloy[J]. Acta Metallurgica Sinica,2022,58(10):1271-1280.
    [15] DAI J C,MIN X H,WANG L. Dynamic response and adiabatic shear behavior of β-type Ti-Mo alloys with different deformation modes[J]. Materials Science and Engineering:A,2022,857:144108. doi: 10.1016/j.msea.2022.144108
    [16] LIU X Q,TAN C W,ZHANG J,et al. Correlation of adiabatic shearing behavior with fracture in Ti-6Al-4V alloys with different microstructures[J]. International Journal of Impact Engineering,2009,36(9):1143-1149. doi: 10.1016/j.ijimpeng.2008.12.007
    [17] HUANG B,MIAO X F,LUO X,et al. Microstructure and texture evolution near the adiabatic shear band(ASB)in TC17 titanium alloy with starting equiaxed microstructure studied by EBSD[J]. Materials Characterization,2019,151:151-165. doi: 10.1016/j.matchar.2019.03.009
    [18] JO M C,KIM S,KIM D W,et al. Understanding of adiabatic shear band evolution during high-strain-rate deformation in high-strength armor steel[J]. Journal of Alloys and Compounds,2020,845:155540. doi: 10.1016/j.jallcom.2020.155540
    [19] ZHENG C,WANG F C,CHENG X W,et al. Capturing of the propagating processes of adiabatic shear band in Ti-6Al-4V alloys under dynamic compression[J]. Materials Science and Engineering:A,2016,658:60-67. doi: 10.1016/j.msea.2016.01.062
    [20] ZHOU T F,WU J J,CHE J T,et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split hopkinson pressure bar test[J]. International Journal of Impact Engineering,2017,109:167-177. doi: 10.1016/j.ijimpeng.2017.06.007
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-07-20
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。