
FGH96合金带孔平板疲劳失效机理及寿命预测方法研究
Research on fatigue failure mechanism and life prediction method of FGH96 flat plate with a hole
针对FGH96合金带孔平板在600 ℃下开展疲劳实验研究,采用黏塑性本构模型计算FGH96合金带孔平板的应力和非弹性应变分布情况,结合扫描电子显微镜(SEM)对疲劳断口的微观形貌观察分析疲劳失效机理。基于SEM观测结果和FGH96合金带孔平板的几何特征,定义临界疲劳损伤参数和应力集中因子,并对连续损伤力学(CDM)模型进行修正。研究结果表明,相较于传统的疲劳寿命预测方法,考虑临界疲劳损伤和应力集中因子的改进CDM模型对FGH96合金带孔平板的疲劳寿命具有更高的预测精度,预测结果均位于实验结果的±2倍分散带以内。
Fatigue tests were conducted on FGH96 flat plates containing a hole at 600 ℃. Utilizing a viscoplastic constitutive model, the stress and plastic strain distributions within these plates were meticulously calculated. Scanning electron microscopy(SEM) was employed to analyze the fatigue failure mechanism. Based on SEM observations and the geometric attributes of the FGH96 plates with holes, the critical fatigue damage and stress concentration coefficient were defined. Subsequently, the CDM(cumulative damage model)was refined accordingly. The findings revealed that, in comparison to conventional fatigue life prediction techniques, the revised CDM model, which incorporates critical fatigue damage and stress concentration coefficients, exhibited enhanced prediction accuracy for the fatigue life of FGH96 flat plates with holes. Notably, all prediction results fell within a ±2 error band.
带孔平板 / 疲劳 / 失效机理 / 寿命预测 / 连续损伤力学 {{custom_keyword}} /
flat plate with a hole / fatigue / failure mechanism / life prediction / cumulative damage model {{custom_keyword}} /
表 1 FGH96合金化学成分表(质量分数/%)Table 1 Chemical composition table of FGH96 alloy(mass fraction/%) |
C | Cr | Co | W | Mo | Nb | Al | Ti | Zr | Ni |
0.05 | 16 | 13 | 4 | 4 | 0.7 | 2.1 | 3.7 | 0.05 | Bal. |
表 2 实验矩阵Table 2 Experiment matrix |
Project | Loading scheme | Load/kN | Stress amplitude/MPa | Mean stress/MPa | Stress ratio |
1 | Load 0.5 s, unload 0.5 s | 23 | 297.5 | 328.8 | 0.05 |
2 | Load 0.5 s, unload 0.5 s | 28 | 362.2 | 400.3 | 0.05 |
3 | Load 0.5 s, unload 0.5 s | 33 | 426.9 | 471.8 | 0.05 |
4 | Load 0.5 s, unload 0.5 s | 38 | 491.6 | 543.3 | 0.05 |
表 3 CDM模型参数Table 3 CDM model parameters |
α | β | M0 | m |
0.8124 | 9.53 | 2624 | 0.000535 |
表 4 Manson-Coffin模型参数Table 4 Manson-Coffin model parameters |
Strain ratio,R | e | d | ||
−1 | 3332.65 | −0.12 | 0.077 | −0.6 |
0.05 | 2320.14 | −0.12 | 0.075 | −0.7 |
表 5 SWT模型参数Table 5 SWT model parameters |
Strain ratio,R | e | d | ||
−1 | 1406.56 | −0.11 | 0.26 | −0.6 |
0.05 | 1562.35 | −0.12 | 0.05 | −0.7 |
表 6 Morrow模型参数Table 6 Morrow model parameters |
Strain ratio,R | e | d | ||
−1 | 1964.23 | −0.11 | 0.27 | −0.68 |
0.05 | 1857.77 | −0.12 | 0.05 | −0.71 |
表 7 Walker模型参数Table 7 Walker model parameters |
e | d | γ | ||
1857.61 | −0.08 | 9.644 | −1.1 | 0.96 |
1 |
周静怡, 刘昌奎, 赵文侠, 等. 粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究[J]. 航空材料学报, 2017, 37 (5): 83- 89.
ZHOU J Y, LIU C K, ZHAO W X, et al. Prior particle boundary of FGH96 superalloy and its in-situ high-cycle fatigue at elevated temperature[J]. Journal of Aeronautical Materials, 2017, 37 (5): 83- 89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李林翰, 张继, 张文云, 等. 镍基高温合金GH4065A高温疲劳断裂机制研究[J]. 材料工程, 2025, 53 (1): 72- 80.
LI L H, ZHANG J, ZHANG W Y, et al. Fatigue fracture mechanism of Ni-base superalloy GH4065A at elevated temperatures[J]. Journal of Materials Engineering, 2025, 53 (1): 72- 80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
董建民, 李嘉荣, 甄真, 等. 渗铝涂层对DD6单晶高温合金疲劳性能的影响[J]. 材料工程, 2025, 53 (1): 65- 71.
DONG J M, LI J R, ZHEN Z, et al. Effect of aluminizing coating on fatigue properties of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2025, 53 (1): 65- 71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张丁非, 戴庆伟, 胡耀波, 等. 塑性损伤的发展与应用[J]. 材料工程, 2011, (1): 92- 98.
ZHANG D F, DAI Q W, HU Y B, et al. Development and application of ductile damage[J]. Journal of Materials Engineering, 2011, (1): 92- 98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社,2002.
CHEN C Y. Fatigue and fracture[M]. Wuhan:Huazhong University of Science and Technology Press,2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
魏大盛, 冯俊淇, 马梦弟, 等. 航空发动机轮盘中心孔模拟试验件设计方法及试验验证[J]. 航空动力学报, 2022, 37 (10): 2157- 2166.
WEI D S, FENG J Q, MA M D, et al. Design method and test verification of simulated specimen of aeroengine disc center hole[J]. Journal of Aerospace Power, 2022, 37 (10): 2157- 2166.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
杨兴宇, 董立伟, 郑小梅, 等. 某压气机轮盘均压孔挤压强化数值仿真和挤压头设计[J]. 航空动力学报, 2013, 28 (8): 1769- 1776.
YANG X Y, DONG L W, DENG X M, et al. Simulation of extrusion strengthening of pressure equalizing hole of an engine compressor disc and design of extrusion heads[J]. Journal of Aerospace Power, 2013, 28 (8): 1769- 1776.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
National Transportation Safety Board. Aircraft accident report-uncontained engine failure[R]. Virginia:National Technical Information Service,1996.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
吴杰, 吴小飞, 田凯, 等. Ti2AlNb粉末合金制备及力学性能影响[J]. 材料工程, 2025, 53 (1): 175- 185.
WU J, WU X F, TIAN K, et al. Preparation and mechanical properties influencing of Ti2AlNb powder alloy[J]. Journal of Materials Engineering, 2025, 53 (1): 175- 185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
张国栋, 何玉怀, 苏彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能[J]. 航空材料学报, 2011, 31 (6): 96- 100.
ZHANG G D, HE Y H, SU B. Thermal-mechanical fatigue performance of powder metallurgy superalloy FGH95 and FGH96[J]. Journal of Aeronautical Materials, 2011, 31 (6): 96- 100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
苗国磊, 杨晓光, 石多奇. 粉末冶金镍基高温合金FGH96高温疲劳寿命分散性特征[J]. 航空动力学报, 2017, 32 (2): 424- 428.
MIAO G L, YANG X G, SHI D Q. Behavior of fatigue life variability of nickel-based powder metallurgy superalloy FGH96 at elevated temperature[J]. Journal of Aerospace Power, 2017, 32 (2): 424- 428.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
冯引利,杨健,吴长波. 考虑表面加工状态的粉末盘低循环疲劳寿命分析[J]. 航空动力学报,2018,33(2):265-272.
FENG Y L,YANG J ,WU C B. Analysis of powder alloy disk’s low cycle fatigue life with surface machining status[J]. Journal of Aerospace Power,2018,33(2):265-272.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
肖阳,秦海勤,徐可君,等. 基于改进SWT模型的FGH96合金低周疲劳寿命预测[J]. 航空学报,2021,42(5):328-336.
XIAO Y,QIN H Q,XV K J,et al. Low cycle fatigue life prediction of FGH96 alloy based on modified SWT model[J]. Acta Aeronautica et Astronautica Sinica,2021,42(5):328-336.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
施祎, 杨晓光, 吕双祺, 等. 粉末镍基高温合金缺陷破坏的认识及力学方法[J]. 中国有色金属学报, 2023, 33 (1): 40- 54.
SHI Y, YANG X G, LV S Q, et al. Understanding and mechanical method of failure induced by defects in powder metallurgy nickel-based superalloys[J]. Transactions of Nonferrous Metals Society of China, 2023, 33 (1): 40- 54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
赵作鹏, 胡绪腾, 郭秩维, 等. FGH96粉末涡轮盘结构模拟件疲劳小裂纹扩展试验[J]. 航空发动机, 2024, 50 (2): 83- 87.
ZHAO Z P, HU X T, GUO Z W, et al. Fatigue small crack propagation test of FGH96 turbine disc structure simulation specimen[J]. Aeroengine, 2024, 50 (2): 83- 87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
隋天校, 石多奇, 杨秦政, 等. 晶体塑性本构模型材料参数识别方法研究[J]. 推进技术, 2023, 44 (3): 200- 209.
SUI T X, SHI D Q, YANG Q Z, et al. Material parameter identification method of crystal plastic constitutive models[J]. Journal of Propulsion Technology, 2023, 44 (3): 200- 209.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
隋天校, 石多奇, 王相平, 等. 取向相关的单晶高温合金低周疲劳寿命评估方法[J]. 航空动力学报, 2021, 36 (10): 2139- 2148.
SUI T X, SHI D Q, WANG X P, et al. Orientation-dependent low-cycle fatigue life evaluation method for single crystal superalloys[J]. Journal of Aerospace Power, 2021, 36 (10): 2139- 2148.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
ZHANG H, SHI D, LI Z, et al. Creep-fatigue behavior of thin-walled plate with holes: stress state characterization and life estimation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45 (10): 3053- 3066.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
WANG H, LI B, XUAN F Z. Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features[J]. International Journal of Fatigue, 2022, 164: 107147.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
CHABOCHE J L. Continuous damage mechanics—a tool to describe phenomena before crack initiation[J]. Nuclear engineering and design, 1981, 64 (2): 233- 247.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
CHABOCHE J L,LESNE P M,MAIRE J F. On the constitutive damage modelling of composite systems[C]// Engineering Mechanics. Reston,VA:American Society of Civil Engineers,1995.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
CHBOCHE J L, LESNE P M A. A non-linear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11 (1): 1- 17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
中国金属学会高温材料分会. 中国高温合金手册[M]. 北京:中国标准出版社, 2012.
High Temperature Materials Branch of the Chinese Society of Metals. Chinese superalloy handbook[M]. Beijing:Standards Press of China,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
梁逸君. 基于特征模拟件的粉末涡轮盘寿命预测方法[D]. 北京:北京航空航天大学,2021.
LIANG Y J. Life prediction method of powder metallurgy turbine disk based on simulated specimens[D]. Beijing:Beihang University,2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
张国乾, 赵明, 章胜, 等. 基于Walker等效应变的涡轮盘低周疲劳寿命预测[J]. 航空材料学报, 2013, 33 (6): 81- 85.
ZHANG G Q, ZHAO M, ZHANG S, et al. Low cycle fatigue life prediction of turbine disks based on walker equivalent strain[J]. Journal of Aeronautical Materials, 2013, 33 (6): 81- 85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |