7050合金RRA沉淀析出的TEM研究

谷亦杰;李永霞;张永刚;黄正;陈昌麒

航空材料学报 ›› 2000, Vol. 20 ›› Issue (4) : 1-7.

PDF(643 KB)
PDF(643 KB)
航空材料学报 ›› 2000, Vol. 20 ›› Issue (4) : 1-7.
论文

7050合金RRA沉淀析出的TEM研究

作者信息 +

TEM observation of precipitates in a 7050 alloy after RRA treatment

Author information +
文章历史 +

摘要

采用透射电镜(TEM)和维氏硬度计研究了回归再时效(RRA)处理对7050合金的的影响。研究发现,7050合金受回归温度和时间影响。当回归温度为453K和473K时,回归曲线由三部分组成,回归再时效曲线由两部分组成。与在回归曲线上存在的峰值硬度相比,回归再时效峰值硬度要高。TEM观察表明,硬度谷值的产生与GP区的回溶有关,而峰值的产生与η′和η相的沉淀析出有关。回归再时效峰值高于回归峰值,这与回归再时效过程中η和η′相沉淀析出数目增加有关。当回归温度为493K,回归和回归再时效曲线单调下降,分析认为由于回归温度高,回归曲线上不能区分GP区的回溶、η和η′相形核、η和η′相长大及粗化这三个阶段。

Abstract

7050 alloy precipitation aging behavior has been studied by transmission electron microscopy and Vickers hardness tester after retrogression and reaging(RRA) treatment. The RRA behavior was affected by the retrogression temperature. When the retrogression temperature was at 453K and 473K, the retrogression curve can be dealt with in three stages and the RRA treatment can be simply considered as a two step aging process. The result of TEM showed that the dissolve of GP zone caused the decrease of hardness and the precipitation of η and η′ caused the increase of hardness. When the regression temperature was 493K, the hardness decreased, and no hardness valley and peak was not observed on the retrogression curve and RRA curve. Analysis indicated that the three stages of dissolve of GP zone, precipitation of η and η′ and growth of η and η′ can not be distinguished at the retrogression curve because of higher retrogression temperature.

关键词

7050合金 / 回归 / 回归再时效

Key words

7050 alloy / retrogression / retrogression and re

引用本文

导出引用
谷亦杰, 李永霞, 张永刚, 黄正, 陈昌麒. 7050合金RRA沉淀析出的TEM研究[J]. 航空材料学报, 2000, 20(4): 1-7
GU Yi-jie, LI Yong-Xia, ZHANG Yong-gang, HUANG Zheng, CHEN Chang-qi. TEM observation of precipitates in a 7050 alloy after RRA treatment[J]. Journal of Aeronautical Materials, 2000, 20(4): 1-7

参考文献

HUNSICKER H Y. Rosenhain Centenary Conf, London, UK, September 1975, The Metals Society, 245-262.
BURLEIGH T D. Postulated mechanisms for stress corrosion cracking of aluminum alloys. A review of the literature 1980-1989,1991,CORROSION 47, (2): 89-98.
NAJJAR D, MAGMIN T, WARNER T J. Influence of critical surface defects and localized competition between, Mater Sci Eng, 1997,A238: 293-302.
CINA B. Reducing the susceptibility of alloy, particularly aluminum alloys to stress corrosion cracking, Pat. 3856584,US patent Office, Washington, DC, 24 December 1974.
PARK J K, ARDELL A J. Effect of retrogression and reaging treatments on the microstructure of Al-7050-T651, Metall Trans. 1984, 15A: 1531-1543.
OHINISHI T, IBARAKJ Y, ITO T. Improvement of fracture toughness in 7475 aluminum alloy by the RRA process, Mater Trans, JIM, 1989, 8: 601-607
LUKASAK D A, HART R M. Aluminum alloy development.,Aerosp.Eng, 1991,11:(9),21-24.
RAJAN K, WALLACE W, BEDDOES J C. Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy., J Mater. Sci, 1982,17. 2817-2825.
DANH N C, RAJAN K, WALLACE W. A TEM study of microstructural changes during retrogression and reaging in 7075 Aluminum, Metall Trans, 1983, 14A: 1843-1850.
DEGISCHER H P, LACOM W, ZAHRA A, ZAHRA C Y. Decomposition processes in an Al-5%Zn-1%Mg alloy,Metallkd. 1980, 71: 231-238.
DEELASI R, ACLLER P N. Calormetric studies of 7000 series Aluminum alloys matrix precipitate characterization of 7075, Met Trans, 1977, 8A 1177-1190.
LLOYD D J, CHATURVEDI M C. A calorimetric study of aluninum alloy AA-7075,J Mater Sci,1983,17:1819-1825.
LORIMER G W, NICHOLSON R B. Further result on the nucleation of precipitatess in the Al-Zn-Mg system,Act Metall, 1966: 14, 1009.
CORNISON A J, DAY M K B. Precipitation in the neighbourhood of grain boundaries in an Al-Zn-Mg alloy,J Inst Met, 1969: 97, 44-52.
HUANG Z W, LORETTO M H, WHITE J. Influence of lithiun additions on precipitation and age hardening of 7075 alloy,Materials science and technology, 1993,9:867-980.

基金

国家重点基础研究发展规划项目(G199906490)
PDF(643 KB)

17

Accesses

0

Citation

Detail

段落导航
相关文章

/