随着航空航天技术的发展,热端部件防护材料也需要满足更高的要求。本工作基于固相反应法和分子动力学模拟研究(ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O(x=0.2、0.544、0.672、0.796和0.92)五元陶瓷体系复合材料。采用ZrO2(99.99%)、Y2O3(99.99%)、Ta2O5(99.99%)、Er2O3(99.99%)和TiO2(99%)粉末作为原料,通过固相反应法制备(ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O复合材料。用LAMMPS程序计算研究 (ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O陶瓷材料的导热性能。结果表明:在200~900 ℃区间时通过实验和模拟获得的热导率变化趋势一致,当x=0.796时热导率均达到最小值,证明了分子动力学模拟多元陶瓷材料热导率的可行性;同时研究了孔隙对热导率的影响,发现元素配比与孔隙对热导率的影响存在一定的竞争关系。当孔隙率大于6.67%时,孔隙率为主要影响因素,当孔隙率小于6.67%时,元素配比为热导率的主导因素。
基于单晶格点原子占位几率描述相变过程的微扩散相场模型,从原子尺度上研究了Ni59Al22V19中熵合金的异相界面结构与相变过程中合金微观组织演化。结果表明:Ni59Al22V19中熵合金沉淀初期有L12和少量的DO22、L10有序相的析出,随着时效过程进行,形成L12与DO22相并存的状态;在时效过程中出现了4种异相界面结构;相变初期,以A类界面结构为主,随着有序相的生长与分解,A类界面结构数量减少而D类结构数量增多;沉淀过程中有序畴界为L12相生长提供Al原子,最终合金平衡体系形成;沉淀过程中γ′相的沉淀机制是等成分有序化和失稳分解机制,θ相的沉淀机制为失稳分解机制;除此之外,Ni59Al22V19中熵合金孕育期随温度升高而时效时间变久;Ni-Al第一近邻原子间相互作用势随长程序参数增加而升高且与温度成正比关系。
高熵合金被定义为含有4种或4种以上主要元素的合金,主要元素的原子分数大于5%且不超过35%,具有高强度、高耐磨性、高耐腐蚀性等优异的性能。难熔高熵合金是基于难熔元素的高熵合金而设计开发的一种新型高温合金,其在航空航天、石油化工等领域具有广阔的应用前景,有望取代传统的高温合金。本文综述了难熔高熵合金一般是从元素选择和添加微量的元素等方面进行成分设计,其相组成有单相组织和双相组织等结构,研究了难熔高熵合金的制备方法和性能特点,并且在文章最后指出了难熔高熵合金目前所面临的问题与挑战。希望通过本文综述,可以为科研工作者在难熔高熵合金的组分设计,微观组织调控以及性能开发等方面提供有价值的参考。
高熵合金由于其新颖的设计理念及特殊性能,成为材料科学领域内新的研究热点。目前高熵合金的研究与应用还主要局限在材料的制备与合成方面,随着其在工业领域的广泛应用,必然涉及高熵合金在焊接领域的研究。本文从高熵合金同种材料的焊接、高熵合金和异种材料之间的焊接以及高熵合金作为填充材料进行异种材料之间的焊接三个方面展开叙述,重点分析焊接方法、高熵合金组分、焊接初始状态及焊接参数等因素对接头组织和性能的影响,特别在高熵合金作为填充材料时,利用高熵效应和迟滞扩散效应进行的界面调控尤为重要;对不同制备方法下的高熵合金涂层进行细致分析,介绍熔覆工艺、添加微量元素以及后热处理的影响,着重对比激光熔覆工艺下高熵合金涂层的耐磨性;通过对高熵合金在焊接领域的研究与应用进行总结,提出目前存在的问题主要是尚未建立高熵合金体系和焊接工艺间的对应标准及阐明缺陷的形成机理;并对未来高熵合金在焊接领域的重点研究方向进行了展望。