机器学习技术在航空材料领域具有广阔的发展前景,并在材料选择、设计和优化等方面发挥着重要作用。首先简要论述机器学习技术在航空领域中的优势和潜力,概述机器学习的技术发展、算法类别和特征及其局限性,介绍机器学习在科学研究中,特别是复杂材料数据形式下的常规的或潜在的应用。其次,主要关注机器学习在航空材料领域的研究现状,探讨近年来利用机器学习辅助高温合金材料、高强度结构材料、热防护涂层材料及功能与智能材料的研究进展,并阐述机器学习驱动航空材料研究的策略和方法。最后,对机器学习辅助航空材料研发所面临的挑战进行展望,通过推动数据资源的开放共享、深化领域知识和物理规律在机器学习模型中的融合,以及不同类型数据的特征一致性转换,助力航空材料研究向大数据驱动的材料科学第四范式转型。
镍基单晶高温合金的力学性能和热稳定性在很大程度上取决于基体与强化相之间的界面。本工作采用密度泛函理论研究Co、Cr、Mo、W、Re和Ta合金元素对γ-Ni/γ′-Ni3Al界面力学性能的影响规律。通过界面结构的收敛性分析,确定合理的计算模型层数。通过合金弹性性能的研究,发现Re和W元素在γ和γ′相中表现出最为显著的强化效果,其中Re元素使γ相杨氏模量和剪切模量分别提升27 GPa和11 GPa,使γ′相杨氏模量和剪切模量分别提升16 GPa和6 GPa;而Ta元素分别使γ和γ′相体模量增加21 GPa和14 GPa。界面拉伸性能的研究表明,Re元素掺杂体系具有最高的理想抗拉强度(约25 GPa)和变形能(约1.84 J·m−2),合金元素对界面抗拉强度的强化效果由强到弱依次为Re>W>Cr>Mo>Ta>Co>未掺杂界面。通过对差分电荷密度和电子态密度分析,得到合金元素的强化作用归因于掺杂原子与最近邻主原子之间化学键强度的增加。电子轨道分布特征表明,合金元素通过维持局部结构稳定性来延缓界面断裂。这些研究结果为开发新型镍基单晶高温合金提供思路。
为了模拟研究循环载荷对DZ411定向凝固高温合金中强化相(γ′相)演变行为的影响,开展950 ℃下的循环载荷(平均应力/应力幅值为200 MPa/130 MPa和150 MPa/130 MPa)和恒载荷(200 MPa)等断裂实验研究,并采用光学显微镜和扫描电子显微镜研究不同载荷对以γ′相为代表的合金微观组织的影响。研究表明:两种实验方式对合金枝晶干结构影响较小,但对枝晶间孔洞的数量及尺寸产生显著影响,恒载荷条件下试样中孔洞数量多于循环载荷条件。随着载荷条件的引入,γ′相的形态由无载荷条件下的球化状态转变为筏化结构,其中循环载荷较恒载荷进一步促进了γ′相沿垂直于应力方向发生定向粗化生长,形成尺寸更大、形态更为细长的N型筏化片层结构。模拟断裂实验研究表明,鉴于涡轮机叶片工作时近似于循环的不稳定载荷环境,该条件下γ′相的定向长大加剧了局部应力集中效应,从而导致DZ411合金高温强度和抗疲劳性能的降低,进而增加合金部件发生断裂失效的风险。
为解决航空发动机常用GH4169镍基高温合金超高周疲劳问题,基于压电超声疲劳测试系统,设计出一种可实现20 kHz超高频振动疲劳试样并完成测试;获得常温环境下GH4169镍基高温合金在不同存活概率5%、50%及95%下超高周振动疲劳P-S-N曲线。测试结果表明:GH4169材料的疲劳寿命在达到107周次后曲线呈下降趋势,没有出现疲劳极限,试样仍发生疲劳破坏。断口分析表明:超高周疲劳裂纹大多起源于试样表面或亚表面的位置,存在单点起裂和多源起裂的情况,起裂方式表现为表面滑移起裂与非金属夹杂物滑移起裂两种形式。
单晶涡轮叶片作为航空发动机关键部件,其服役寿命与表面完整性紧密相关,通常需要对其表面进行喷丸强化以满足性能需求。基于此,本工作采用表面轮廓仪、扫描电镜、显微硬度仪和应力测定仪等,系统研究了喷丸前和不同喷丸强度(0.15、0.2 mmA和0.25 mmA)处理对DD6单晶高温合金的表面形貌及粗糙度、近表层微观组织、硬度和残余应力等表面完整性指标的影响规律。结果表明:喷丸强化后的DD6单晶高温合金表面原始机加工痕迹减弱,合金表面粗糙度由0.15 mmA试样的0.507 μm增大到0.25 mmA的0.883 μm;在近表面产生了一层梯度塑性变形层,剧烈变形层深度由0.15 mmA试样的45 μm逐渐增大到0.25 mmA的98 μm;表面硬度值由原始机加工试样490HV逐渐增大到0.25 mmA的738HV,硬化层深度也达到260 μm;合金在0.2 mmA喷丸强度下表面残余压应力达到最大,约为–821.2 MPa。
研究不同浇注温度的DD419单晶高温合金在850 ℃/650 MPa、1050 ℃/190 MPa、1100 ℃/130 MPa下的持久性能,并采用SEM、EDS和TEM分析不同浇注温度下的组织形态和成分偏析,研究其对持久性能的影响。结果表明:浇注温度降低,合金一次枝晶间距增大,共晶含量和显微孔洞增多,同时γ′相尺寸减小。在高温低应力(1100 ℃/130 MPa)下持久性能受γ′相尺寸的影响大于显微孔洞和残余共晶含量,细小弥散的γ′相有利于合金的持久性能,因此1500 ℃浇注的合金持久性能最佳。中温高应力下γ′相被大量位错切割,弥散的γ′相更利于位错塞积。同时不同浇注温度下的合金均保持了良好的伸长率,但随着浇注温度的降低,3种测试条件下的断面收缩率下降。浇注温度对合金的断口形貌影响不大,850 ℃/650 MPa持久断口附近的γ′相依旧保持立方形态,断裂机制为混合断裂,其他条件下γ′相均发生了筏化,断裂机制均为微孔聚集型断裂。
随着航空发动机涡轮前温度的不断提升,研发新一代航空发动机涡轮叶片用单晶高温合金及其热防护涂层迫在眉睫。为了满足航空发动机复杂的服役环境对高温结构材料综合性能提出的严苛要求,在材料集成计算工程与材料信息学的推动下,近年来国内外逐步开展了单晶高温合金与热防护涂层的智能设计研究,以提高研发效率、降低研发成本。本文重点综述多尺度计算模拟与机器学习方法在推动新型单晶高温合金与热防护涂层设计上的最新研究进展,确证了多尺度计算模拟为揭示单晶高温合金强韧化机理与热防护涂层抗氧化、阻扩散机制所提供的有效理论支撑,展现机器学习在构建高温结构材料“成分-组织-性能”内禀关系上的可靠性与巨大潜力,为新一代高承温单晶高温合金与热防护涂层提供了智能高效的快速研发新路径。
随着全球能源结构的转型和环保要求的提高,混氢燃气轮机作为一种高效、低排放的能源转换设备受到了广泛关注。本文综述国内外混氢燃气轮机的发展现状,分析燃气轮机中氢气燃烧的特性,探讨燃氢对复杂部件的影响及其高温材料的应用,同时分析在高温、高压和腐蚀条件下工作的热端部件材料所需满足的性能要求,以及目前材料研发中的主要挑战与潜在解决方案。详细讨论氢燃烧过程中,水蒸气以及氢脆效应对燃气轮机合金和热障涂层的影响。水蒸气会加速合金的氧化和腐蚀,导致合金力学性能下降。此外,氢脆效应也会严重影响合金的韧性和耐久性,增加裂纹扩展和断裂的风险。针对这些问题,未来研究应重点关注多场耦合模拟和加速腐蚀实验的探究,综合考虑温度、压力、不同气氛等多种因素,建立真实环境模拟器,评估合金和涂层性能。同时应注重氢气和水蒸气同时存在时对高温合金和热障涂层产生的复合效应,深入探究氢在合金中的扩散机制、与晶格缺陷的相互作用和引发氢脆的微观过程。构建高温水蒸气环境下氧化模型,明晰水蒸气在高温下的解离吸附机制,保护性氧化膜Al2O3和Cr2O3的羟基化以及非保护性氧化物(如尖晶石)的生长行为。
单晶高温合金的薄壁效应是指当试样、零件厚度小于1 mm时,其持久寿命减少、蠕变速率增加以及其他力学性能发生显著衰减的现象。随着先进航空发动机单晶叶片零件内部冷却结构的发展,其部分区域结构厚度的减小使其属于典型的薄壁结构,因此在设计与制造叶片的过程中将薄壁区域的薄壁效应纳入考量具有重要工程意义。蠕变性能是航发叶片单晶高温合金材料最重要的性能之一,本文总结了单晶高温合金蠕变性能薄壁效应方面的研究以及薄壁效应研究中发展的先进实验设备。引起蠕变性能薄壁效应的机制包括氧化作用相对增强、各向异性效应更加显著、微观组织的变化、缺陷的萌生与运动方式变化,对蠕变薄壁效应产生影响的因素则有实验条件(温度、应力等),加工方式(直接铸造,机械加工),几何外形(矩形截面、环形截面、打气膜孔)。对单晶高温合金薄壁效应的研究属于工程应用范畴,薄壁件作为“积木式”验证评价技术中“元件级/模拟件级”的一环,在服役环境或近服役环境条件下研究薄壁效应就使得研究结果更具有应用价值,为此,国内外发展了各式各样的实验设备平台用于模拟叶片在发动机内的某一个或几种耦合服役条件(高温、高压、腐蚀/冲蚀、离心加载)。未来薄壁效应的研究应当在更接近实际服役条件下进行,即按实际叶片制造工艺制备实验试样,并在模拟服役环境设备上进行实验。
采用SEM和EBSD显微分析手段研究镍基变形高温合金GH4065A熔焊焊点的缺欠组织,并对比研究无焊点、有密排焊点和疏散排布焊点3种GH4065A带中孔薄板试样分别在低周和低高周复合疲劳载荷下的寿命差异和断裂方式差异。结果表明:焊点组织中存在未熔合孔洞、凝固裂纹和液化裂纹,是导致含焊点试样低周和低高周复合疲劳寿命大幅下降的主要熔焊缺陷。这些熔焊缺陷的存在使得疲劳裂纹从无焊点试样的中孔内表面处转为在焊点处优先形成,导致700 ℃/700 MPa低周疲劳寿命的下降幅度可达44%~83%。在600 ℃和700 ℃低高周复合载荷(静应力700 MPa+动应力100 MPa)下,熔焊缺陷不仅使得裂纹源从中孔内表面处转为在焊点处优先形成,也改变了裂纹扩展方式,增大了沿晶扩展倾向。这使得低高周复合疲劳寿命在两种温度下均大幅下降超过85%。由于密排焊点因距离中孔结构更近,密排焊点试样低周疲劳寿命低于疏散排布焊点试样,但这种焊点情况差异对低高周复合疲劳寿命的影响不大。
先进材料技术是航空航天高新装备的发展先导,是支撑现代工业的关键基础技术,渗透到国防建设、国民经济和社会生活等方方面面,已成为世界各国争相发展的技术高地和国防重点。本文梳理分析航空航天先进结构材料近年来的技术现状及发展趋势,在高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷及其复合材料四方面进行重点阐释,明确我国航空航天结构材料的研发与生产仍面临着跟踪研仿多、自主创新少、技术封锁严重、技术瓶颈亟待突破等困境。同时,本文对航空航天结构材料未来研究和发展提出展望,点明建立“产-学-研-用”完整技术体系的重要性。
随着“双碳”目标的提出,氢作为绿色清洁能源成为未来航空业发展的重要趋势,近年来氢燃料航空发动机备受关注。高温合金是当前燃气涡轮发动机热端部件中应用最广泛的材料,本文综述现有其他领域涉氢环境对合金的影响,为未来氢燃料航空发动机用高温合金研制和应用提供参考。对内/外氢环境的引入、渗(充)氢方法、氢浓度/氢分布特征及氢稳定存在温度的测量、氢对拉伸、蠕变/持久和疲劳性能的影响以及氢脆的断裂机理进行分述,总结不同成分、制备工艺、原始组织状态、合金化程度以及不同应用领域高温合金在涉氢环境下的力学性能退化因素。结果表明,外氢环境下比内氢环境下力学性能下降更快;合金化程度更高的高温合金氢脆更明显,而高温氢环境下合金性能损伤(蠕变/持久、疲劳和拉伸)倾向较室温明显降低。就燃氢涡轮动力用高温合金在涉氢环境下的力学性能评价及适氢环境高温合金的研制进行展望。燃氢涡轮航空发动机可能面临的涉氢工作环境包括:液氢存储的低温氢环境;用于通道冷却的氢环境;经过气体压缩的高温高压氢环境;以及燃烧产物-高温水蒸气(高温潮湿)环境的影响。重点应关注氢在高温合金中的扩散和渗透、高温合金在高压氢环境下的脆性和腐蚀、高温潮湿环境下氧化和腐蚀行为以及上述多重耦合环境下合金和涂层的退化和防护机制。针对燃氢涡轮发动机工作环境,需要搭建近服役条件的高温合金燃氢环境实验装置,开展燃氢环境对高温合金及零部件的影响研究,建立现役叶片和盘件等热端部件关键用材在涉氢环境中的力学性能数据库和相关标准,并在此基础上适时研发适用于燃氢环境使用的高温结构材料,为氢燃料燃气涡轮航空发动机的应用提供支持。
高温合金主要应用于涡轮后机匣、扩压器、预旋喷嘴等航空关键热端部件,采用整体精密铸造技术取代“分体铸造+焊接”成形方法,可减少零件数量和加工工序、提升可靠性、减轻质量,是航空发动机先进材料加工关键核心技术之一。然而复杂薄壁构件液态精密成型存在尺寸超差难题,导致发动机气动性能降低,装配精度下降,是长期制约我国航空发动机关键构件制造质量的瓶颈问题。本文综述目前国内外在高温合金精密铸造尺寸精度控制方面的研究进展,并对基于数字化和智能化技术的发展趋势进行了前瞻性分析和探讨,未来迫切需要构建液态精密成型数字孪生平台,发展更先进的尺寸变形精准定量智能预测方法以及压蜡模具内腔型面设计理论。
增材制造技术为发展高性能高温合金材料及部件提供了新的途径。本工作开发一种适于增材制造工艺条件的γ′相强化CoNi基高温合金,并结合电子束熔化(electron beam melting ,EBM)技术的工艺参数优化,制备出无裂纹的合金块体材料。结果表明:扫描速度为2000 mm/s时,合金孔隙率最低,约为0.14%;打印态CoNi基合金显微组织为沿<001>方向生长的柱状晶粒,平均晶粒宽度约为235 μm,γ′相体积分数约为 30%;经过热等静压及固溶时效处理后,孔隙率进一步降低至约0.09%,柱状晶粒基本没有变化;γ′相的平均尺寸为(70±18) nm,体积分数为(32±3.6)%。室温拉伸实验结果表明,增材制造γʹ相强化CoNi基高温合金展示出优异的强塑性配合,展示出良好的工业应用前景。
针对镍基高温合金反重力铸造工艺中传统压力曲线设计方法的不足,充分考虑铸件沿充型方向的变截面结构特征,通过CAD软件的二次开发,实现铸件截面积的自动计算,以定量化描述铸件的截面变化特征。基于伯努利方程和流量守恒方程,推导出充型压力与金属液面上升速度之间的关系,提出基于铸件截面积自动计算的新型压力曲线设计方法。在此基础上,对镍基高温合金铸件的反重力铸造过程进行数值分析。充型模拟结果表明:与传统压力曲线设计方法相比,新型设计方法确定的压力曲线能使最小截面处充型速度峰值由0.611 m/s降至0.439 m/s,降幅达28.15%,有效避免金属液震荡和飞溅;同时可缩短充型时间,确保金属液快速平稳充型。水力学实验和浇注实验表明,新型压力曲线的充型液面更平稳,能有效抑制铸造缺陷,证明新型压力曲线设计方法的有效性,为合理设计反重力压力曲线提供依据。
K403镍基高温合金具有优异的室温和高温综合性能,广泛用于航空发动机涡轮叶片及导向器的制造。针对涡轮叶片长期服役于复杂工况产生的裂纹缺陷等问题,本工作先对钨极氩弧(tungsten inert gas,TIG)焊和激光熔覆两种工艺修复后的组织与拉伸性能展开对比分析,而后使用激光熔覆工艺修复叶片,并进行无损检测。利用OM、SEM观察微观组织、断口形貌,利用EDS进行相的成分分析。结果表明:TIG焊修复工艺在修复界面区附近易产生微裂纹缺陷,主要碳化物相和低熔点共晶组织引起;激光熔覆工艺修复区域的晶粒与组织更加均匀,微裂纹缺陷更易得到控制;激光熔覆工艺修复的试样综合力学性能明显高于TIG焊修复工艺的试样,且激光熔覆工艺具有较好的工艺稳定性,TIG焊修复工艺的室温拉伸强度为K403母材强度的69.22%,激光熔覆修复工艺室温抗拉强度达到了母材的87.44%,断口形貌显示修复区域的室温拉伸断口呈现出混合断裂特征,高温拉伸断口呈现出沿晶断裂的特征。修复区域的微裂纹、局部液相不足缺陷和碳化物是拉伸断裂的主要原因。激光熔覆修复工艺具有热源集中、热影响区小的优势,能够有效抑制修复区缺陷并细化微观组织,在叶片修复方面具有更大优势。使用激光熔覆修复工艺完成了叶片试车过程产生的边缘板裂纹损伤修复,经过荧光检测及煤油-白垩检测,满足相关使用要求。
镍基高温合金是涡轮发动机和燃气轮机中的重要结构材料,然而其制件传统加工过程复杂、成本高昂且原材料利用率不高。电子束粉末床熔融(electron beam powder bed fusion,EBPBF)技术能够实现复杂结构制件近净成形,是一种高温合金成形的新方案。EBPBF技术实现了以Inconel 718、Inconel 625为代表的高温合金材料构件的成形,并且发展至能够成形无裂纹的高比例γ′相难焊镍基高温合金,甚至直接制备单晶体镍基高温合金构件,材料的性能达到了传统铸锻件的水平。本文回顾近年来以EBPBF镍基高温合金作为研究对象的相关文献,从工艺过程、组织调控、力学性能等角度对EBPBF制备镍基高温合金构件研究现状进行分析总结,并对未来的研究工作提出了展望。
镍基高温合金具有良好的高温性能,被广泛用于航空发动机与燃气轮机热端部件的制造。增材制造逐点快速熔凝、逐层累积堆叠的工艺特点,不仅可实现高性能复杂结构零件的快速制造,还可用于损伤零件的高效率、高质量修复。目前,增材制造技术已逐渐成为镍基高温合金零件制备及修复的重要技术途径之一。本文综述了增材制造镍基高温合金在显微组织与冶金缺陷研究方面的进展,总结现有文献中GH3536、GH3625和GH4169三种常用镍基高温合金的拉伸性能,介绍增材制造镍基高温合金零件在航空发动机及燃气轮机中的典型应用案例。最后,针对现有研究存在的问题及制约增材制造镍基高温合金零件应用的困难,提出从设计增材制造专用镍基高温合金成分、建立增材制造镍基高温合金专用热处理/热等静压工艺、开发单晶镍基高温合金增材制造技术、发展增材制造实时监测控制技术、创新增材制造零件内表面处理技术等方面,进一步促进增材制造镍基高温合金零件的工程应用。
在GH5188高温合金异形件表面制备了铂铱薄膜热电偶,并将薄膜热电偶放置于焰流台,测试高温合金异形件表面的瞬态温度。经过高温高速焰流灼烧四个循环,总测试时长达到8700 s后,铂铱薄膜热电偶仍可以稳定获取温度数据。这次实验的成功,说明铂铱薄膜热电偶向工程化应用迈出了重要一步。项目团队瞄准薄膜热电偶工程化应用,研究了薄膜制备技术、界面调控、集成制备及信号与系统等内容,突破了13项关键技术,实现了铂铱薄膜热电偶的工程应用。该项实验的突破使得国内在叶片模拟服役条件下具备测温能力。
使用TWL12+TWL20无机盐铝涂层喷涂于镍基粉末高温合金表面,采用XRD、SEM、EPMA和TEM研究无机盐铝涂层与粉末高温合金经700、750、800 ℃高温氧化后的组织变化。结果表明:高温氧化后涂层表层结构出现剥落,涂层中的铝与基体合金发生扩散,形成由氧化区、扩散区、互扩散区组成的过渡层,其中氧化区为最外层,该区域主要富集O、Al元素,形成Al2O3层;随之的扩散区主要含有Ni、Al元素,形成NiAl相及在其中弥散分布的α-Cr相;最后是富集Ti、Cr、Co、Ta等元素的互扩散区,存在于扩散区与基体之间,主要由Ni2AlTi相基体及在其中弥散分布的σ相组成;分析表明过渡层厚度随着氧化温度升高而变化,主要表现为互扩散区宽度增加,扩散区中的α-Cr相与互扩散区的σ相尺寸增大,且σ相沿垂直过渡区方向生长的趋势加剧;氧化增重曲线表明,涂层表层结构脱落后,过渡层在750、800 ℃高温氧化过程中表现出良好的抗氧化性能,说明TWL12+TWL20无机盐铝涂层具有为航空发动机用先进粉末高温合金提供高温氧化涂层保护的潜力。
研究DD6单晶高温合金在700 ℃、R=0.05条件下的低周疲劳性能,采用扫描电镜观察断口形貌和断裂组织,分析疲劳裂纹萌生、扩展及断裂机制。结果表明:随着应变幅增加,合金的低周疲劳寿命降低,合金在非对称循环载荷条件下具有良好的低周疲劳性能,不存在过渡寿命,低周疲劳过程中弹性应变起主要作用,塑性变形量极小。随着总应变幅的增加,塑性变形损伤增加;疲劳断口由疲劳源区、裂纹扩展区和瞬断区三部分组成,所有试样断裂机制均为类解理断裂。疲劳裂纹萌生于试样的表面、亚表面或远离表面的显微孔洞,远离表面起裂断口呈现“鱼眼”特征。裂纹先沿与主应力轴垂直方向扩展,然后沿{111}平面扩展,裂纹扩展区有典型的疲劳条带、解理台阶、河流状花样特征,瞬断区有解理平面、滑移带、撕裂棱特征;断裂组织分析表明远离断口处γ′相仍保持立方状形态,断口附近的γ′相发生了塑性变形,断口附近可见滑移带,二次裂纹沿滑移带形成。
采用引晶技术制备了大尺寸双联镍基单晶涡轮导向叶片。利用高速凝固法(high rate solidification,HRS)进行单晶叶片定向凝固,并对单晶叶片进行宏观腐蚀,揭示叶片单晶完整性。通过扫描电镜、电子背散射衍射(EBSD)技术及高温持久实验,评估单晶叶片实际性能。同时,利用有限元模拟软件ProCAST对单晶叶片的定向凝固过程进行数值模拟及分析。结果表明:采用引晶技术可有效避免杂晶缺陷的形成,并可成功制备单晶完整性良好的大尺寸双联涡轮导向叶片,但在Vane 1叶片主晶与引入晶体之间仍会形成角度分别为1.5°和2.7°小角度晶界(LABs)缺陷;LABs使得单晶叶片的高温持久性能虽稍有降低(寿命损失小于15%、断后伸长率损失小于7%),但仍可满足叶片的服役性能。根据ProCAST软件对大尺寸双联单晶导向叶片凝固过程的模拟结果得知,设置引晶结构后,叶片的原始凝固路径得到了优化,叶片前缘位置的过冷条件得到了改善,杂晶缺陷的形核概率得到了降低,有效避免了杂晶缺陷的形成。
采用表面粗糙度仪、X射线残余应力测试仪和显微硬度计分别对试样表面粗糙度、表面残余应力分布和硬度梯度等表面完整性参数进行表征,研究不同表面完整性状态对K4169合金缺口旋弯试样高温疲劳寿命的影响规律。结果表明:相比未喷丸试样,喷丸试样在632 ℃、450 MPa条件下的中值疲劳寿命提高了10.2~43.9倍;喷丸后疲劳源数量降至单个,疲劳源萌生位置由表面转移至次表层。喷丸试样表面形成了高幅值的表面残余压应力(–941~–1023 MPa),并产生了一定深度的硬化层(0.10~0.32 mm),较大的喷丸强度获得了较大的硬化层深度;喷丸消除了试样表面加工刀痕,并显著降低了表面应力集中系数;喷丸改善了试样表面完整性,是疲劳寿命提升的主要原因。
以具有空心气冷结构涡轮叶片用第二代镍基单晶高温合金DD6为研究对象,研究试样厚度对其超高周疲劳性能的影响。基于有限元方法结合实测设计了工作段厚度为0.5 mm的超高频振动疲劳薄壁试样,实测一弯共振频率达到1425 Hz左右,采用电磁振动台开展超高周疲劳实验,获取最高至109周次的疲劳S-N曲线,并开展与标准旋转弯曲疲劳、标准振动疲劳实验数据的对比分析。结果表明:DD6单晶高温合金的疲劳强度在107~109周次范围内下降约25%,薄壁试样高周疲劳强度和同材料标准旋弯疲劳强度基本一致,略低于标准振动疲劳强度;薄壁试样的裂纹在危险截面的表面萌生,呈线源特征,疲劳扩展区存在两个扩展平面,呈现类解理特征。
利用悬挂法研究不同直径石英玻璃柱型芯在单晶高温合金定向凝固过程中的蠕变变形特征。采用扫描电镜 (SEM) 观察蠕变型芯表面及径向组织,利用能谱(EDS)分析蠕变型芯表面产物成分,使用XRD方法确定其表面反应产物。结果表明:随定向凝固时间的延长,玻璃柱型芯蠕变变形量增加;随型芯直径增大,蠕变变形量降低;蠕变时间60 min、直径0.5 mm的石英柱变形最严重,平均变形量为30 mm、直径2.0 mm的石英玻璃柱最轻,平均变形量只有24 mm;高温与高真空环境下,定向炉内的C颗粒粉末及合金中挥发的Al会沉积到石英玻璃柱型芯表面,玻璃柱型芯表面与C及Al发生界面反应并形成表层疏松组织层,反应产物所占型芯体积分数导致了不同直径石英玻璃柱型芯的蠕变量不同,随反应产物体积分数的增加,玻璃柱型芯蠕变变形量线性增大。
采用高纯度W箔中间层复合AgCuTi活性钎料对镍基高温合金(GH4169)与Si3N4陶瓷进行连接,系统研究接头的微观界面结构以及钎焊温度对GH4169/Si3N4钎焊接头组织和力学性能的影响。结果表明:采用AgCuTi+W复合钎料可实现GH4169/Si3N4钎焊接头的有效连接,其接头组织成分为GH4169/TiNi3+TiCu+TiCu2+Ag(s, s)+Cu(s, s)+W+TiN+Ti5Si3/Si3N4;钎焊温度对接头组织和力学性能有显著影响。当钎焊温度较低时,液态钎料中的Ti元素扩散到陶瓷与钎料界面的较少,没有形成明显的反应层;当钎焊温度增加到880 ℃时,Ti元素富集在陶瓷侧反应生成厚度为2 μm的TiN和Ti5Si3反应层,此时接头的剪切强度最高,达到190.9 MPa。随着钎焊温度的升高,脆性化合物增多,使接头的力学性能大幅降低;断口结果表明在剪切过程中,裂纹在中间层萌生,后扩散至Si3N4陶瓷基体内,最终在Si3N4母材内发生断裂。
采用选区激光熔化技术(SLM)制备GH3536高温合金试样,通过改变激光功率和扫描速度研究工艺参数对成形试样密度、显微缺陷和表面质量的影响。结果表明:当激光能量密度从46.3 J/mm3增加到243.1 J/mm3时,成形试样密度得到显著提高并在8.30~8.35 g/cm3范围内波动,随着输入的激光能量进一步增加试样密度又略微下降。通过金相观察发现当输入激光能量不足时,试样内部存在大量不规则孔洞缺陷,然而当输入激光能量过高时,试样内部出现了许多分布均匀的微裂纹和气孔,说明激光能量过高或过低都会降低成形试样的致密度。进一步对成形试样表面黏附的飞溅颗粒统计分析后,确定了SLM成形GH3536合金的最佳工艺参数,对该参数下成形的试样进行室温拉伸性能测试,得到了具有良好室温拉伸力学性能的GH3536高温合金材料。
在高温长期服役条件下高温合金涡轮叶片的组织存在老化和性能退化问题。通过对DZ406合金试样进行预先加载处理,模拟涡轮叶片的高温服役环境,热力耦合模拟条件分别为980 ℃/70 MPa,980 ℃/110 MPa,980 ℃/140 MPa与980 ℃/180 MPa,再对试样进行980 ℃/275 MPa持久实验。观察分析不同服役载荷条件下试样的显微组织和980 ℃/275 MPa持久寿命。结果表明:DZ406合金标准热处理组织由碳化物、残余(γ+γ´)共晶和规则立方状的γ´相组成;在模拟服役条件热力耦合作用下,随着服役载荷应力的增加,合金的共晶和碳化物形貌及尺寸无明显变化,平行于[001]方向试样的γ´相呈现不同程度的筏排化,垂直于[001]方向截面的γ´相尺寸明显增大;随着服役载荷应力的增加,不同热力耦合作用试样的剩余持久寿命迅速降低。
长寿命民机及地面燃气轮机涡轮叶片在工作过程中长期受到高温氧化的影响,使其在复杂工况下表面强度大幅度降低,服役寿命明显缩短,因此高温抗氧化性能是涡轮叶片应用中必须考虑的重要性能指标。本课题研究毫秒和皮秒激光加工工艺下DD406镍基单晶高温合金气膜孔结构在980 ℃和1100 ℃下的高温氧化行为,得到相应定量氧化动力学以及氧化物微观组织结构演化规律,揭示不同制孔工艺下气膜孔结构的氧化机理差异,为服役工况下叶片强度寿命模型的建立提供基础。结果表明:毫秒工艺下的气膜孔结构氧化速率显著高于皮秒工艺,不同工艺的氧化动力学曲线均遵循抛物线或直线规律;毫秒工艺下,氧化初期外层快速生成(Ni, Co)O,此阶段反应速率主要由NiO的生长过程控制,之后形成典型(Ni, Co)O-尖晶石相层-α-Al2O3典型三层结构;内α-Al2O3层下方及γ'相消失层存在较多孔洞,导致氧化层易剥落;皮秒工艺下,氧化初期快速生成不连续α-Al2O3,随后相互连接,形成连续致密α-Al2O3层。
采用光学金相显微镜(OM)、扫描电镜(SEM)及电解腐蚀方法研究粉末冶金高温合金FGH96中人工植入莫来石基耐火材料夹杂物在原始颗粒态、热等静压和热变形过程中形貌和成分的演变规律,揭示莫来石基夹杂物与合金基体发生界面反应的机制。结果表明:在原始颗粒态时,人工植入的莫来石基夹杂物为无规则颗粒状;经过高温高压的热等静压固结成形后,夹杂物内部形态和成分未发生明显变化,但夹杂物与基体界面发生置换反应形成了结构复杂的反应层,该反应层由Al、Ti的氧化物构成,并含有较多孔隙。经过25%变形量(温度1080 ℃、应变速率0.0004 s−1)的热变形后,夹杂物主体形态和成分未发生明显变化,而夹杂物外部包覆的反应层随高温合金基体的变形开始从夹杂物上剥离和拉长,并随着金属基体的流动变形,在靠近拉长方向一侧发生聚集;当变形程度为50%时,莫来石夹杂物连同外部包覆的反应层发生破碎变形,形成夹杂物碎块加反应层的复合形态,该复合形态夹杂物呈线状分布,长轴垂直于压缩方向;当夹杂物外部包覆的反应层被剥离、莫来石夹杂物本体破碎后,形成的暴露于高温合金基体的新表面将继续反应生成新反应层,破碎的莫来石夹杂物本体仍然以O、Al、Si为主要组成,但同时含有少量Ni、Cr、Ti、Co、Mo等高温合金中的元素。
在Gleeble-1500D热模拟试验机上对镍基高温合金GH4133B进行变形温度为 940~1060 ℃,应变速率为0.001~1 s−1,变形量为50%的热模拟压缩实验,并对不同工艺参数下的变形试样进行微观组织观察。结合Arrhenius双曲正弦型方程并引入Zener-Hollomon参数,构建该合金热变形的本构模型,绘制热加工图。获得该合金的热变形激活能为 448 kJ/mol,在温度为1020 ℃,应变速率为1 s−1时,功率耗散达到峰值。基于本构模型的建立和热加工图的绘制等热模拟压缩研究结果和微观组织测试结果,确定GH4133B镍基高温合金最佳的热加工变形温度和应变速率分别为1020~1060 ℃和0.01~0.1 s−1。
采用混合粉末钎料钎焊第三代含铼单晶高温合金,其中混合粉末钎料是利用球磨混粉方法将一种镍基粉末钎料和母材成分相同的高温合金粉混合制成。利用SEM和EPMA分析镍基钎料与高温合金粉配比对接头微观组织的影响,并对四种钎料的钎焊接头进行高温持久性能测试。结果表明:采用镍基钎料的焊缝和混合粉末钎料的焊缝中均存在γ-Ni、γ′、γ+γ′共晶、CrB、Ni3B以及M3B2型硼化物,但混合粉末钎料的残留为熔化的球型高温合金;保持焊缝间隙不变,提高混合粉末钎料中高温合金粉末的配比,可以抑制焊缝中M3B2型硼化物和低熔点相的析出,且硼化物的分布变得更均匀,尺寸变得更小,提高了焊缝成分和组织的均匀性;3种接头的高温持久性能均优于纯钎料接头,当提升合金粉的比例由0%至50%时,接头的持久寿命由15 min提升至34 h,但当合金粉比例增加至60%时,接头中产生大量孔洞缺陷,导致持久寿命下降至4 h。
以原始态和恢复态定向合金为研究对象,通过再服役高温时效和γ′相组织形貌观察,分析原始态和恢复态定向合金γ′相的时效稳定性,研究恢复参数对恢复态定向合金γ′相时效稳定性的影响。结果表明,恢复热处理可将蠕变损伤组织恢复到接近原始态定向合金状态。但相比于原始态定向合金,恢复态定向合金的枝晶干γ′相再服役时效稳定性较差,这与MC碳化物的分解密切相关。不同恢复热处理参数下获得的恢复态定向合金的时效稳定性差异较大。固溶温度越高,保温时间越短,冷却速率越大,恢复态定向合金的枝晶干γ′相时效速率越大;一次时效温度和保温时间越大,恢复态定向合金的枝晶干γ′相时效速率越小。二次时效条件对恢复态定向合金γ′相的时效稳定性无明显影响。
对比研究标准热处理(SHT)、热等静压+标准热处理(HIP+SHT)以及热等静压+无均匀化热处理(HIP+HTWH)后K4169合金的组织和力学性能,分析K4169合金HIP后进行无均匀化热处理的可行性,提出了一种适用于热等静压K4169合金的热处理制度。组织研究表明:热等静压处理(1170 ℃/140 MPa/4 h)可以基本消除枝晶间Laves相和δ相;而与HIP+SHT试样相比,无均匀化热处理的试样(HIP+HTWH)晶界上析出了不连续短棒状δ相,但没有对组织的均匀性产生实质影响。力学性能研究表明:相比SHT态,HIP+SHT与HIP+HTWH态合金的室温屈服强度分别提升了73 MPa和91 MPa,持久寿命(704 ℃/448 MPa)分别提升了35%和32%;虽HIP+HTWH态合金的持久寿命和塑性分散度大于HIP+SHT态,但仍能满足AMS5383对K4169合金力学性能的要求。综合考虑工艺成本的降低、生产效率的提高和力学性能的改善等多种因素,可以确定对于K4169合金结构件而言,HIP+HTWH热处理工艺具有实际应用的潜力。
高温结构材料是航空发动机的关键材料,镍基高温合金广泛应用于先进航空发动机叶片、涡轮盘和燃烧室等热端部件之中。镍基高温合金在母合金熔炼、真空浇注等工序中会不可避免地引入杂质元素,随着对高温合金零部件性能要求的不断提升,合金中杂质元素对合金性能的影响越来越受到关注。S元素作为一类杂质元素,其含量尽管较低,但是依然会对材料的性能造成不利影响。本文从S元素对镍基高温合金及其涂层组织和性能的影响两方面出发,综合实验研究与第一性原理计算,详细阐述S元素对高温合金显微组织的影响,以及在高温合金基体及氧化层、涂层等界面的偏聚情况,总结了S元素对高温合金力学性能、抗氧化和热腐蚀性能及涂层性能的影响。
钛合金-镍基高温合金异种材料复合结构能充分发挥两种材料各自的优势,实现性能互补,在航空发动机制造领域具有重要应用前景。本工作针对TC4-GH4169异种材料复合结构,设计了(V-15Cr)+ 0Cr13中间过渡层结构,并采用激光熔融沉积技术进行制备,研究激光功率和粉末铺叠方式对激光熔融沉积TC4-GH4169异种材料界面冶金质量的影响。结果表明,(V-15Cr)+ 0Cr13复合中间层界面冶金控制是影响TC4-GH4169异种材料冶金质量的关键因素。采用送粉式激光熔融沉积工艺,当激光功率为400 W时,由于激光能量较低,0Cr13和V-15Cr之间未发生有效冶金反应,出现了层间剥离现象;采用600 W激光功率,(V-15Cr)/0Cr13界面出现了少量的脆性σ相;当功率增加至800 W时,0Cr13和V-15Cr熔覆层之间具有较大的稀释率,界面处形成了层厚约为20 μm且连续分布的σ相。采用预置粉末的激光熔融沉积工艺,并使激光焦点处于V-15Cr熔覆层的表面,可使0Cr13和V-15Cr熔覆层之间的稀释率控制在合理水平,有效避免了界面σ相的形成。剪切实验结果表明,断裂发生在V-15Cr合金层,界面强度达到299 MPa,强度系数达到0.61。
定向凝固高温合金DZ125是我国现役主力航空发动机涡轮叶片材料,本工作研究Si、S、Zr等微量元素对DZ125合金微观组织和力学性能的影响。结果表明,S在DZ125合金中主要以M2SC的形式和MC共生,同时在碳化物和晶界富集;Si主要在晶界碳化物中富集;当合金中Zr含量达到0.044%(质量分数)时,M2SC化合物中还含有约6 %的Zr。在所研究的含量范围内,Si、S、Zr等微量元素对DZ125合金的室温拉伸性能没有明显影响,但对持久性能有一定影响,当Si、S、Zr含量升高到较高水平,合金的760 ℃/804 MPa持久寿命明显下降,980 ℃/235 MPa持久寿命持续缓慢下降,这与Si、S、Zr含量升高所导致的M2SC相析出,Si、S在碳化物和晶界的富集,以及枝晶干区γ′相立方化程度下降等微观组织变化有关。为了保证DZ125合金具有良好的力学性能,Si、S、Zr等微量元素含量应控制在较低水平。
通过对不同含量Hf和Re的Co-Ti-V高温合金进行组织形貌观察和X射线衍射分析,研究不同含量Hf和Re合金中γ′相形貌与γ/γ′两相晶格错配度的关系。采用EDS分析合金中各元素的分配行为与γ/γ′两相晶格错配度的关系。通过对不同成分的合金进行1000 ℃高温压缩实验,研究Hf和Re含量对合金高温压缩性能的影响。结果表明:随着Hf含量的增加,γ′相的形貌由立方形转变为球形,γ/γ′两相的晶格错配度减小;随着Re含量的增加,γ′相的形貌由立方形变为长条状,且γ′相变得粗大,γ/γ′两相的晶格错配度减小;通过EDS分析,Co、Hf和Re元素在γ相中富集,而Ti和V元素在γ′相中富集;随着Re含量增加,合金的屈服强度和抗拉强度均增加;随着Hf含量的增加,合金的屈服强度和抗拉强度先减小后增大。
利用场发射扫描电子显微镜(FE-SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)、二次离子质谱(SIMS)等分析手段,研究温度对镍基高温合金GH4169粉末表面氧化特性的影响。结果表明:室温条件下,GH4169高温合金粉末表面部分氧化,表面存在以Ni、Cr、Ti、Nb为主的单质态和以Ni(OH)2、Cr2O3、TiO2、Nb2O5为主的氢氧化物/氧化物;随着温度的升高(150~250 ℃),Ni、Cr、Ti、Nb元素XPS单质峰减弱,氧化程度略有增加,粉末表面部分氧化;当温度达到350 ℃时,Ni、Cr、Ti、Nb元素XPS单质峰几乎全部消失,粉末表面全部氧化,氧化层厚度约为5 nm,主要由Ni(OH)2、Cr2O3、TiO2、Nb2O5组成;温度对GH4169高温合金粉末氧化特性影响显著,对本研究所用的GH4169高温合金粉末暴露大气条件下1 h内,最高处理温度不应超过250 ℃。
采用扫描电子显微镜(SEM)等手段研究DD6单晶涡轮叶片典型截面的γ′相演化规律。结果表明:与铸态组织相比,热处理态叶片各典型截面枝晶间区域的γ′相尺寸显著细化,枝晶间和枝晶干区域的γ′相尺寸趋于一致,分散度趋向减小,γ′相立方化程度提高;叶片各截面枝晶干和枝晶间区域的铸态和热处理态γ′相的尺寸均遵循正态分布规律;热处理态叶片叶身截面γ′相尺寸小于榫头,叶身截面中部位置γ′相尺寸大于前缘、尾缘γ′相尺寸。