对DD3单晶合金进行1250℃保温不同时间的TLP扩散连接研究.降温过程采取了随炉冷却和充氩快冷两种方式,随后对接头进行了870℃/32h/空冷的时效处理.分析了不同规范下的焊缝及母材的组织,同时测定了接头的980℃持久性能.结果发现:炉冷并时效处理试样的焊缝及母材中的γ'相的尺寸随着保温时间增加而增加,且形状趋于不规则.而充氩冷却并时效处理试样的焊缝及母材中的γ'相的尺寸和形状基本一致,随保温时间的增加没有明显变化,立方化较好.低的冷却速率使焊缝和母材中的γ'相粗化从而降低了接头和母材的性能,而高的冷却速率促使焊缝及母材中形成细小立方化的γ'相,不仅使接头性能明显提高,同时母材性能也没有降低.
制备了矿化剂为氧化铝的二氧化硅基陶瓷型芯,研究了矿化剂粉体粒径、形状等形貌特征对陶瓷型芯性能的影响.结果表明:随着氧化铝粉体粒径的增大,浆料流动性逐渐降低,加入氧化铝球形粉有利于改善浆料的充型性能;加入不规则形状氧化铝粉时,随着氧化铝粉体粒径的增大,型芯的烧结收缩率减小;加入球形氧化铝粉时,其粉体形状和粒径大小对收缩率和室温抗弯强度无明显影响,但导致较大的高温变形量.
通过热压缩试验研究了TA7钛合金在变形温度850~1000℃、应变速率0.001~0.1s-1条件下的流变应力变化规律,计算并建立了描述TA7钛合金高温变形特性的本构方程.结果表明:变形温度和应变速率对TA7钛合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态.
采用磁控溅射法制备PbSe薄膜,并用配制的腐蚀液进行不同时间的表面处理,从而得到不同表面形貌的薄膜结构.利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-Vis)对处理后的PbSe薄膜的表面形貌、晶体结构以及光学性能进行了表征,同时对薄膜的光电导性能进行测试.结果表明,薄膜经此工艺处理后,表面形成了一系列纳米陷光结构,并有着不同程度的氧化.不同腐蚀时间下,薄膜的光电导性能均有明显地提升,其中经3h腐蚀处理的薄膜的光电导性能提升最高.该方法无需进行后续热处理,是一种简单高效的敏化手段.
采用Gleebe-1500D热压缩模拟试验机在变形温度350~500℃、应变速率0.001~5s-1的条件下对Al-17.5Si-4Cu-0.5Mg合金进行热压缩实验,研究该合金在热塑性变形下的流变应力行为及其热加工特性,研究结果表明:Al-17.5Si-4Cu-0.5Mg合金为正应变速率敏感材料;该合金可用Znenr-Hollomon参数双曲正弦形式来描述高温塑性变形时的流变应力行为;合金平均热变形激活能Q为308.61kJ/mol.基于动态材料模型(DMM)建立了Al-17.5Si-4Cu-0.5Mg合金的热加工图,并结合热加工图和显微组织分析获得了该合金较优的热变形工艺参数:变形温度为400~470℃,应变速率为0.1s-1.
通过搅拌摩擦焊接技术成功连接了两种应用于航天工业的铝合金2195-T8和2219-T87.实验中固定焊接转速,研究了焊缝组织和力学性能随焊接走速的变化关系,发现焊核区上部异种材料间有明显界面,且该界面形貌受焊接走速影响剧烈.同时在焊接速度较高时,发现一种新的搅拌摩擦焊接接头的断裂模式.此种断裂模式与焊核区上部形成的异种材料间界面形貌和冶金结合强度有关.本文探讨了其产生原因及其对接头力学性能的影响.
分别利用普通钢制垫板和自制的带有冷水通道的铜制垫板,对AZ31镁合金进行了搅拌摩擦加工.利用光学显微镜(OM)、SEM、显微硬度仪和拉伸设备,研究了被加工件厚度、搅拌头焊接速率和冷却条件对试样搅拌区力学性能的影响.研究表明:试样搅拌区从上层至中层和底层,再结晶晶粒尺寸依次减小.通过减小被加工件厚度、增大搅拌头焊接速率和加快冷却速率等方法,抑制了试样搅拌区晶粒长大.在搅拌头转速和焊接速率分别为800r/min和90mm/min的条件下,得到的搅拌区底部平均晶粒尺寸约为450nm,该区域显微硬度为96HV,与普通钢制垫板制备的试样相比,硬度提高了24HV,其屈服强度、抗拉强度和伸长率分别提高为原材料的1.27倍、1.6倍和2.2倍.
对不同温度时1-癸烯齐聚物与钢铁表面的相互作用进行了分子动力学模拟,以Et3NHCl和AlCl3 为原料合成了离子液体催化剂,考察了不同反应条件对1-癸烯齐聚产物运动粘度、粘度指数、凝点等性质的影响;采用红外光谱和气相色谱对齐聚产物进行了的表征.研究结果表明:在较宽的温度范围内1-癸烯齐聚物三聚体和四聚体与钢铁表面相互作用后的表面总能量变化趋向于恒定;齐聚合成的工艺条件为AlCl3/Et3NHCl摩尔比为3,离子液体质量分数为5%,反应温度为100℃,反应时间为7h时,齐聚产物在40℃和100℃时的运动粘度分别为57.49mm2·s-1和9.94mm2·s-1,粘度指数为160,凝点为-63℃,具有很好的粘温性能和低温流动性;1-癸烯齐聚产物表征的结果表明,齐聚反应进行得比较彻底,产物具有较长线性侧链,1-癸烯齐聚产物中三聚体与四聚体总含量为84.57%,与前期研究工作的积累和分子动力学模拟结果基本吻合.
以2-苯基咪唑(2PZ)为芯材,聚甲基丙烯酸缩水甘油酯(PGMA)为壁材,采用溶剂挥发技术,成功地制备了一种新型潜伏性热释放型2PZ-PGMA微胶囊固化剂.系统地研究了溶剂种类及油水比、表面活性剂种类及用量、核壳投料比等参数对微胶囊形貌、粒径大小及分布、囊芯2PZ含量及产率等的影响,最终优化了微胶囊固化剂的制备工艺:当溶剂为二氯甲烷,油水比(体积比)为4:5,表面活性剂为0.4%(质量分数)SDS,核壳投料比为1:1时制备的微胶囊固化剂最优.
对复合材料贮箱结构进行低速冲击试验,并测试冲击后贮箱结构的渗漏性能.试验结果表明,当层板内部的基体损伤和分层损伤构成贯穿的通路后即导致贮箱渗漏,并且贮箱结构的冲击能量渗漏门槛值介于23~25J之间.在试验基础上建立了有限元模型以分析冲击后贮箱结构的内部损伤情况,并判断结构是否渗漏,计算结果与试验吻合良好.在计算模型的基础上对曲面贮箱结构的冲击渗漏性能进行分析.
研究了热补仪修理复合材料层压板结构的缺陷特征.金相显微分析结果表明,当修补层数为2层时,样品没有任何缺陷产生;当修补层数增加到4层时,修补层内出现气孔缺陷;当修补层数增加到6层时,除了修补层内出现大量气孔缺陷以外,胶膜层也出现气孔,导致弱粘接/脱粘缺陷的产生.超声检测的结果与金相显微分析一致,很好地再现了上述缺陷.
利用垂直入射的偏振横波换能器,首先研究了偏振方向与铝合金棒材挤压方向成不同角度的超声横波速度的差异,然后对不同应力下与应力方向成不同角度偏振的超声横波速度的变化进行了研究.试验结果表明:在无应力时,平行于挤压方向偏振的横波和垂直于挤压方向偏振的横波的速度差异不大,棒材的各向异性对不同方向偏振横波速度的影响不明显.当施加应力后,平行于应力方向偏振的横波传播时间升高,垂直于应力方向偏振的横波传播时间降低;在剔除材料弹性变形所带来的声传播距离变化的影响后发现,平行于应力方向偏振的横波声速降低,垂直于应力方向偏振的横波声速升高;与偏振方向平行的应力对横波速度的影响大于与偏振方向垂直的应力对声速的影响.
针对航空15-5PH马氏体沉淀硬化不锈钢在磁粉检测过程中发现的条状、片状和长直磁痕显示进行了总结.分析了不同磁痕显示的特点及微观组织情况,最终确定了磁痕的性质.结合不同热处理状态下的磁特性分析,确立了纯洁度磁粉检测的工艺流程以及磁痕判别方法.研究发现沉淀硬化不锈钢在磁粉检测过程中磁痕显示主要是由铁素体和组织不均匀造成的.研究结论为航空制造过程中沉淀硬化不锈钢的磁粉检测的磁痕判定以及规范的制定提供依据,确保磁粉检测工作的顺利进行.
缺陷容限设计方法充分考虑直升机的特点,将损伤容限设计思想巧妙地应用于直升机的设计中,通过缺陷容限值保证关键动部件的服役安全.本文采用疲劳极限反推的方法测试了三种尺寸的缺陷容限门槛值,分别采用有限元法和Y. Murakami公式计算缺陷容限门槛值,结果表明:含有265μm,374μm,480μm缺陷尺寸的三种试件缺陷容限门槛值基本相同;缺陷容限门槛值明显低于长裂纹门槛值,采用长裂纹门槛值作为缺陷容限门槛值会导致偏于危险的结果;有限元法与Y. Murakami公式应力强度因子计算结果非常接近,Y.Murakami公式计算结果略低于有限元法.
由于SiO2气凝胶独特的纳米多孔结构,使其具有诸多其他材料所不能比拟的优异性能,比如极高的孔隙率和比表面积、极低的热导率及密度等特性.这些优异的性能使得SiO2气凝胶在高效保温隔热、隔声等领域具有极大的应用潜力.本文阐述了SiO2气凝胶的溶胶-凝胶制备过程及其机理,分别对SiO2气凝胶的热学、力学、光学和疏水性能的研究进展进行了概述,同时分析了气凝胶的微观结构与上述性能之间的关系,并介绍了SiO2气凝胶在低温保温隔热领域的应用现状和前景.