涂覆于高温合金热端部件表面的热障涂层,具有隔热防护作用,属新一代燃气轮机的关键核心技术。等离子喷涂制备的热障涂层隔热性能好,但长时间高温服役后存在开裂剥落问题,引发基体烧蚀、造成巨大经济损失。因此,发展长寿命热障涂层是该技术领域的重大难题。本文从等离子喷涂热障涂层的独特层状结构特征入手,阐述涂层在高温服役中结构和性能的演变规律,揭示涂层剥落失效机理,总结长寿命热障涂层设计方法。研究表明,等离子喷涂热障涂层呈现以连通2D孔隙为主的层状多孔结构,具有优异的隔热功能和协调应变能力。然而,涂层在高温服役中发生烧结,2D孔隙大量消失,涂层显著刚化,使热障涂层开裂驱动力急剧增加,引发微观裂纹扩展并贯通形成大尺度裂纹,导致涂层最终剥落失效。据此,分别从降低开裂驱动力和增加开裂阻力两方面着手,总结抗开裂新结构涂层设计方法,为研发长寿命热障涂层指明了发展方向。在未来研究中,如何保证涂层高隔热和长寿命并同时兼顾经济性,是发展新一代高性能热障涂层的重点方向。
超音速火焰喷涂制作的金属黏结层加料浆喷涂制作的柱状晶结构陶瓷隔热层被视作新一代航空发动机和燃气轮机用热喷涂热障涂层,其中采用的MCrAlY金属黏结层正朝着长寿命、低成本、适用于新燃料的方向发展。本文综述近年来航空发动机和燃气轮机热端部件热障涂层用MCrAlY金属黏结层研究进展,并对涂层的结构设计与成分设计进行探讨。
采用代表体积单元法建立NiCoCrAlY/YSZ梯度热障涂层的有限元二维微观模型,计算不同相成分配比下梯度层的热物理性能参数,将参数结果推广到三维多层涂层实体模型,研究热循环过程中双层结构涂层和梯度结构涂层的热力学性能。结果表明:梯度层的弹性模量、泊松比、热膨胀系数、导热系数与各相成分比例近似呈线性关系,导热系数受各相分布形态的影响;当梯度层中NiCoCrAlY相成分比例在0.7以下时,导热系数较低,常温状态最高为2.91 W·m−1·K−1。相比于双层结构涂层,梯度结构涂层的YSZ成分比例降低20%,隔热温度降低14%,陶瓷面层在高温时产生的热失配径向拉应力降低47%,轴向拉应力降低32%,切应力降低37%,冷却后的残余应力降低50%,这归因于涂层结构的梯度化有效降低涂层与基体热膨胀系数不同而产生的热失配应力。根据涂层应力分布结果,涂层易在TC/BC界面的中心区域形成垂直裂纹,靠近外侧边缘区形成水平裂纹。
采用激光对大气等离子喷涂7YSZ热障涂层进行表面重熔处理,探讨基体预热和Al2O3溶胶涂敷对激光重熔层裂纹愈合的影响,研究处理后热障涂层的耐CMAS熔盐腐蚀性能。结果表明:涂层经过激光重熔和基体预热后的激光重熔处理后,与未经重熔处理涂层的CMAS腐蚀厚度基本相同;而采用表面Al2O3溶胶涂敷加激光重熔的热障涂层的CMAS腐蚀厚度明显减小,表明Al2O3溶胶涂敷加激光重熔工艺可以有效地减轻CMAS熔盐侵蚀,其机理是表面形成的Al2O3薄膜溶于CMAS后生成了难熔晶体钙长石,降低了熔盐的流动性和腐蚀性。
随着航空发动机涡轮进口温度提升,目前最广泛使用的Y2O3部分稳定ZrO2(YSZ)热障涂层(TBCs)已难以满足需求,亟须发展新一代超高温TBCs。GdPO4是一种极具应用前景的TBCs材料。本工作采用等离子喷涂方法制备GdPO4/YSZ双陶瓷层结构TBCs,研究喷涂工艺参数特别是喷涂功率对GdPO4陶瓷涂层相组成、表面形貌、微观结构以及结合强度的影响。结果表明:等离子喷涂GdPO4过程中会有元素P损耗,得到的涂层除了GdPO4外,还有一些Gd3PO7相;随着喷涂功率降低,Gd3PO7相含量减少;GdPO4陶瓷涂层的主体结构由充分熔融的喷涂粒子堆垛构成,其中镶嵌有未熔化粒子构成的微区;随着喷涂功率降低,未熔化微区增多,涂层厚度降低;GdPO4/YSZ TBCs的结合强度随喷涂功率降低而减小,主要是由于未熔化微区增多降低了涂层的内聚力;因此,低喷涂功率不利于涂层的结合强度。
航空发动机是飞机的“心脏”。先进航空发动机正在向高推重比、高效率、低油耗和长寿命方向发展。以热障涂层、热/环境障复合涂层、高温隐身涂层等为代表的高温功能涂层应用于航空发动机关键热端部件,起着提升发动机服役性能、服役寿命和安全可靠性的重要作用。本文以热障涂层、热/环境障复合涂层、高温隐身涂层等为例,系统概述了近年来国内外以及北京航空航天大学在高温功能涂层材料设计、涂层制备科学与技术、涂层性能评价表征等方面的研究进展,并展望了先进航空发动机新型高温功能涂层所面临的挑战和发展动向。未来先进高温功能涂层的研究重点将集中在多功能复合涂层、极端环境适应性和工艺适配性等方面。
热障涂层(thermal barrier coatings,TBCs)是一种由金属黏结层、热生长氧化物层和陶瓷面层组成的金属-陶瓷复合系统,在先进的航空发动机领域上引起了广泛的关注,但目前先进热障涂层的热循环寿命提升和失效行为研究仍然是一个难点。本研究采用电子束物理气相沉积技术(electron beam physical vapour deposition,EB-PVD)制备LaZrCeO/YSZ双陶瓷层热障涂层,研究热障涂层的相结构、显微组织和失效行为。结果表明:LaZrCeO/YSZ涂层为烧绿石与萤石结构组成的复合涂层材料,LaZrCeO/YSZ涂层的微观结构由羽毛状纳米结构和柱内孔隙组成;在1100 ℃热循环条件下,LaZrCeO/YSZ双陶瓷层热障涂层展现了良好的热循环寿命;热循环实验后,由于应力累积的作用裂纹在热生长氧化层(TGO)中萌生并扩展,包括水平裂纹和垂直裂纹两大类,进而引起整个涂层体系的不稳定,最终导致涂层失效。
在纳米ZrO2-8% Y2O3(摩尔分数)(8YSZ)粉末中掺杂20%(质量分数)微米级CeO2粉末,并通过喷雾干燥合成CeO2-8YSZ(CYSZ)复合团聚粉体。借助激光粒度仪和扫描电镜(SEM)及附带能谱仪(EDS)考察羧甲基纤维素黏结剂(carboxymethyl cellulose,CMC)质量分数对复合团聚粉体性能影响。采用PS-PVD制备具有柱状结构的CYSZ热障涂层,对涂层截面和表面进行EDS分析。采用X射线衍射(XRD)和X射线光电子能谱(XPS)分析涂层物相。结果表明:黏结剂质量分数达到2%时可获得球形度高、粒度分布均匀的团聚粉体;制备的涂层中Ce元素呈均匀分布;涂层物相基本为t-相结构,其中Ce4+取代Zr4+进入ZrO2晶格形成类质同象的固溶体结构,显示出CeO2掺杂对t-相向m-相转变的抑制作用;所制备CYSZ涂层在1100 ℃,水冷循环100次后仍保持完整,展现出较高的抗热冲击性能。
广泛应用于航空发动机和地面燃气轮机中的热障涂层具有低热导率和良好的耐温性能,能够降低涡轮叶片表面温度,使高温结构件能在高于其熔点的环境中长时间高效率的服役。热障涂层的性能和寿命受到陶瓷层材料与其结构的直接影响,采用可控原料粉末对陶瓷涂层进行微观结构调节的方法可以减少涂层中的应变-应力失配,具有操作灵活、效果显著、调控范围广等优势。针对传统热障涂层应变容限低,抗热震性能不足等问题,本团队开发了静电喷雾技术结合相分离原理(ESP)制备新型热喷涂微球粉末的造粒理论和实现方法,实现了对粉末形貌结构的精确构筑,可用于制备核壳、均质和层级孔等全体系喷涂微球粉末。与传统的喷涂粉末相比,其中层级孔微球粉末(由特殊的纳米-微米层级跨尺度孔构成)呈现耐烧结、低热导率、高比强度及95%以上的高温波段反射率特点。使用层级孔微球粉末喷涂的热障涂层由于层级孔特征结构的保留,展现出优异的力学性能和隔热性能,热循环寿命提升2倍以上,热导率下降50%以上,且在服役过程中体现出良好的抗烧结性能。ESP造粒技术为新型热障涂层材料从材料设计到工程应用提供了一种快速的涂层性能调控方法,现已成功应用于稀土锆酸盐、稀土钽酸盐和稀土掺杂 YSZ高熵体系等新型热障涂层的制备之中,随着层级孔结构对材料力学、光学、热学的深入研究及其内部拓扑结构的精确控制,未来将会在航空航天、军事国防、荧光测温等领域获得更为广泛的应用。
系统研究大气等离子喷涂不同含量YO1.5掺杂氧化锆涂层(8YSZ、38YSZ和55YSZ)在1300 ℃下的环境沉积物(CMAS熔盐)腐蚀行为和机制。结果表明:8YSZ涂层会发生严重的CMAS熔盐腐蚀,在基体与CMAS界面处,通过溶解-再析出,生成非保护性、含Ca和较低Y含量的C-ZrO2,并有明显的晶界腐蚀现象;对于较高含量YO1.5掺杂的38YSZ和55YSZ涂层,随着反应的进行,除球状C-ZrO2外,还生成保护性的磷灰石(apatite)和石榴石(garnet)产物,能够有效阻止CMAS熔盐的进一步侵蚀;并且,55YSZ涂层表现出优于38YSZ的抗CMAS熔盐腐蚀能力。从光学碱度而言,YO1.5含量越高,涂层与CMAS熔盐的反应活性越高,越容易生成在CMAS熔盐中稳定存在的产物;从反应进程来分析,高YO1.5含量的涂层材料能够促使Y3+在CMAS熔盐中的饱和,进而生成更为稳定、连续的物相(如磷灰石、石榴石),避免基体材料进一步与CMAS熔盐接触、反应,从而提高了抗CMAS腐蚀能力。
随着全球能源结构的转型和环保要求的提高,混氢燃气轮机作为一种高效、低排放的能源转换设备受到了广泛关注。本文综述国内外混氢燃气轮机的发展现状,分析燃气轮机中氢气燃烧的特性,探讨燃氢对复杂部件的影响及其高温材料的应用,同时分析在高温、高压和腐蚀条件下工作的热端部件材料所需满足的性能要求,以及目前材料研发中的主要挑战与潜在解决方案。详细讨论氢燃烧过程中,水蒸气以及氢脆效应对燃气轮机合金和热障涂层的影响。水蒸气会加速合金的氧化和腐蚀,导致合金力学性能下降。此外,氢脆效应也会严重影响合金的韧性和耐久性,增加裂纹扩展和断裂的风险。针对这些问题,未来研究应重点关注多场耦合模拟和加速腐蚀实验的探究,综合考虑温度、压力、不同气氛等多种因素,建立真实环境模拟器,评估合金和涂层性能。同时应注重氢气和水蒸气同时存在时对高温合金和热障涂层产生的复合效应,深入探究氢在合金中的扩散机制、与晶格缺陷的相互作用和引发氢脆的微观过程。构建高温水蒸气环境下氧化模型,明晰水蒸气在高温下的解离吸附机制,保护性氧化膜Al2O3和Cr2O3的羟基化以及非保护性氧化物(如尖晶石)的生长行为。
研究飞机涂层的导静电问题,对rGO/CNTs/EP复合涂层表面的电荷积聚、消散过程进行理论分析,并根据实验数据进行拟合分析,探讨理论模型的合理性以及影响电荷消散作用的因素。采用三种电荷动态变化模型对实测数据进行拟合分析,揭示拟合曲线以及电荷积聚与消散过程的时间常数、拟合系数等参数,与理论变化曲线进行对比研究,验证电荷变化情况与时间常数的关系,评价模型的合理性与涂层电荷耗散效果。结果表明:相比于积聚模型,复杂模型较好地反映电荷积聚过程中的变化;随着涂层中rGO/CNTs添加量的增加,积聚时间常数与消散时间常数比值增大,积聚电荷的峰值减小,消散作用增强;消散模型基本符合电荷消散过程的实际变化趋势,随着rGO/CNTs添加量的增加,消散时间常数减小,消散作用增强。
归纳总结稀土铪酸盐材料的种类、制备方法、热学性能、力学性能以及抗低熔点氧化物熔盐腐蚀(CMAS)和高温水蒸气腐蚀的研究进展。现有研究表明,稀土铪酸盐具有低热导率、优异的高温相稳定性以及较好的抗CMAS腐蚀性能等特点,在T/EBC涂层领域展现了较好的应用前景。但为了克服单一稀土铪酸盐在抗水蒸气腐蚀和CMAS方面的局限,未来仍需针对多稀土组元/高熵化的稀土铪酸盐开展系统研究,进一步明晰组元引起的晶格畸变对材料理化性能的影响机制,探索防热、抗水蒸气腐蚀和抗CMAS等功能一体化的铪酸盐热-力-化多性能耦合调控方法及对应的材料制备工艺。
随着航空发动机涡轮前温度的不断提升,研发新一代航空发动机涡轮叶片用单晶高温合金及其热防护涂层迫在眉睫。为了满足航空发动机复杂的服役环境对高温结构材料综合性能提出的严苛要求,在材料集成计算工程与材料信息学的推动下,近年来国内外逐步开展了单晶高温合金与热防护涂层的智能设计研究,以提高研发效率、降低研发成本。本文重点综述多尺度计算模拟与机器学习方法在推动新型单晶高温合金与热防护涂层设计上的最新研究进展,确证了多尺度计算模拟为揭示单晶高温合金强韧化机理与热防护涂层抗氧化、阻扩散机制所提供的有效理论支撑,展现机器学习在构建高温结构材料“成分-组织-性能”内禀关系上的可靠性与巨大潜力,为新一代高承温单晶高温合金与热防护涂层提供了智能高效的快速研发新路径。
航空发动机中的碳化硅纤维增强碳化硅陶瓷基复合材料(SiCf/SiC)因承受高温高速燃烧气体的氧化腐蚀而发生损伤甚至失效。本工作利用燃气发生装置模拟航空发动机中复杂燃气环境,将以一定比例混合后的航空煤油与液氧燃料点燃,形成高温高速燃烧气体对材料进行考核。对SiCf/SiC复合材料分别进行1200 ℃燃气环境10 h氧化实验和1000次热冲击实验,探究环境屏障涂层(environmental barrier coating,EBC)对SiCf/SiC复合材料的防护作用。对燃气环境考核后的SiCf/SiC复合材料和SiCf/SiC-EBC复合材料进行单轴拉伸强度测试,并利用扫描电镜对其断口及截面微观形貌进行观察。结果表明:在燃气环境下氧化 10 h后,SiCf/SiC复合材料和SiCf/SiC-EBC复合材料内部没有发生明显的界面层及纤维氧化,单轴拉伸强度下降不到2%;在燃气环境下经过1000次热冲击后,在SiCf/SiC复合材料内部形成多处微裂纹并发生了界面层的氧化腐蚀,单轴拉伸强度下降41.3%;EBC涂层可以有效保护SiCf/SiC复合材料免受高温燃气的氧化腐蚀,SiCf/SiC-EBC复合材料在经过1000次热冲击后的单轴拉伸强度下降16.6%。
ZnO是目前压电螺栓传感器的主要涂层材料,具备优异的压电性能,表现出优异的声-电信号转换性能,但目前对其高温结构及性能稳定性研究较少。本工作利用射频磁控溅射法在(100)Si和工业用钛合金螺栓上制备出可产生超声纵波的ZnO压电涂层,并对其进行不同温度和不同时长的退火处理,用扫描电子显微镜、原子力显微镜、X射线衍射和自建的WHU-US100声信号测量设备研究高温退火处理对涂层结构及性能的影响。结果表明,Si/ZnO涂层在600 ℃以下的退火处理不会对涂层表面微观形貌产生影响,涂层截面形貌呈现柱状晶结构,且随着温度的升高,柱状晶有合并的趋势;涂层表面粗糙度变化幅度为±4 nm;不同的退火温度对涂层的晶体结构未产生明显的影响。螺栓/ZnO涂层在500 ℃及以下温度的退火处理后涂层表面完整,600 ℃退火处理后的螺栓涂层完全脱落,超声检测表明涂层在500 ℃以下退火后保持稳定;在300 ℃下,经过长时间的退火处理后,螺栓样品可正常激发出超声波,涂层结构未被破坏,表明该ZnO涂层可以在300 ℃的温度范围内长期服役。
稀土硅酸盐环境障涂层(EBCs)是应用于新一代高推重比航空发动机热端部件的重要材料,但在服役过程中,稀土硅酸盐面层易产生纵向裂纹,为腐蚀性介质进入EBCs体系内部提供通道,使硅黏结层发生氧化并产生裂纹,最终导致EBCs失效。二硅化钼(MoSi2)具有优异的高温性能,有望改善稀土硅酸盐EBCs体系的高温稳定性。本工作采用MoSi2改性Yb2SiO5面层,通过真空等离子喷涂技术(VPS)分别制备了以Yb2SiO5、Yb2SiO5-5%MoSi2(体积分数,下同)和Yb2SiO5-10%MoSi2作为面层,以Yb2Si2O7作为中间层,以Si作为黏结层的三种环境障涂层体系,利用场发射扫描电子显微镜表征了涂层在1350 ℃热震前后的形貌变化。结果表明:掺杂MoSi2不仅能改善涂层的损伤容限,还可消耗氧化性介质,减少其向涂层体系内部的扩散,使黏结层上TGO层厚度分别降低83%和88%,从而有效改善涂层体系的高温稳定性。
连续SiC纤维增强钛基复合材料(SiCf/Ti复合材料)具有良好的比强度和综合力学性能,是新一代装备研制备受关注的轻质高温结构材料。SiCf/Ti复合材料可采用箔压法(FFF)和基体涂层法(MCF)进行制备,为对比两种工艺方法对其界面反应生长的影响,采用FFF和MCF分别制备SiCf/TC17复合材料。对两种工艺制备的SiCf/TC17复合材料在高温下(800~900 ℃)进行热暴露处理,通过扫描电镜对其微观结构及界面反应层厚度进行分析,获得界面反应层在高温下的生长速率,并进一步获得不同制备工艺状态下材料的界面反应动力学参数。结果表明:相同温度下MCF法制备的SiCf/TC17复合材料界面反应速率大于FFF法制备的复合材料,前者的反应速率因子k0为4.942×10−3 m/s1/2,反应激活能Q为276.3 kJ/mol,后者的界面反应速率因子k0为8.149×10−3 m/s1/2,反应激活能Q为291.7 kJ/mol。这是由于MCF法制备的钛合金基体具有更微小的相组织,具有较小的反应激活能,在高温下具有更高的元素扩散速率。
在镍基单晶高温合金基体上采用化学气相沉积法制备铂铝金属黏结层,并采用电子束物理气相沉积制备氧化钇部分稳定化的氧化锆(YSZ)陶瓷面层。研究了黏结层相组成对热障涂层循环氧化行为的影响,借助扫描电子显微镜(SEM)、X射线能谱分析(EDS)和X-射线衍射分析(XRD)等方法分析涂层的相结构、显微组织和化学成分。结果表明:黏结层主要成分包括Ni、Al、Pt、Co和Cr 元素并由β-(Ni,Pt)Al相和PtAl2相组成;经热循环测试后,涂层在热生长氧化物(TGO)和黏结层内部及其界面可能出现剥离;随着热暴露时间的延长,TGO层处的残余应力总体上呈现出逐渐减小的演变趋势;控制铂铝黏结层前驱体活性、Pt/Al元素含量、抑制脆性PtAl2相生成、改善TGO层/黏结层界面韧性和降低TGO层应力应变水平可有效延长铂铝黏结层体系热障涂层的热循环寿命。
海洋环境服役的航空发动机在频繁启停过程中面临严重的常温盐雾-高温氧化交替引起的腐蚀问题。采用直流磁控溅射技术在GH4169高温合金表面制备一层均匀致密的Ni25Cr5AlY涂层,通过设计1000 ℃高温氧化、常温盐雾和常温盐雾-高温氧化交替的实验环境,利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析腐蚀产物的成分和结构,对NiCrAlY高温防护涂层的腐蚀损伤行为开展研究。结果表明:在进行168 h的高温氧化实验后,Ni25Cr5AlY涂层表面生长了一层连续致密的Al2O3膜,抗氧化性能良好;在进行168 h的常温盐雾实验后,涂层表面因局部形成点蚀坑而变得粗糙不平;在进行168 h的常温盐雾-高温氧化交替实验后,涂层因氯的活性氧化腐蚀机制导致表面Al2O3膜发生降解生长Cr2O3膜,氧化膜疏松多孔且局部开裂导致涂层腐蚀损伤加速,涂层和基体发生内氧化;没有涂层保护的GH4169合金在经历相同的交替实验后则发生严重的腐蚀损伤,表面形成保护性较差的NiO膜,合金发生严重的内氧化,腐蚀产物大量剥落而显著减重。
为了开发适用于苛刻工况的长寿命、高可靠的自润滑涂层,选择NiCoCrAlYTa作为黏结相,Ag作为润滑相,Mo作为增强相,采用超音速火焰喷涂(high-velocity oxy-fuel spraying,HVOF)技术在Inconel718高温合金基体上制备复合涂层。考察该复合涂层在室温及800 ℃循环交变条件下的摩擦学行为,研究磨损表面的形貌特征、化学成分、相组成,揭示摩擦过程中元素之间的相互作用以及摩擦表面的物理化学本质,探究其在高低温交变环境下的多循环“自适应”润滑机理。结果表明:复合涂层致密均匀,力学性能良好,主要有γ-Ni,β-NiAl,γ′-Ni3Al,Ag和Mo等物相;复合涂层表面生成的β-Ag2MoO4类层状润滑剂,可大大改善涂层在高温条件下的摩擦磨损性能;在多循环交变条件下,复合涂层后续循环摩擦因数较首次循环而言有所增大,但在室温条件下的磨损率却有所减小;这是涂层在高温条件下生成的β-Ag2MoO4类层状尖晶石润滑相与Al2O3、MoO3硬质相氧化物在摩擦剪切力的作用下相互影响而导致的。
采用料浆烧结工艺在激光选区熔化成形Ta10W合金基体表面制备三层结构的钼-硅系高温抗氧化涂层,采用SEM和EDS表征合金基体及涂层的微观组织和元素分布,评价合金基体及涂层的拉伸性能、显微硬度和涂层结合强度。结果表明:激光选区熔化成形Ta10W合金表面涂层具有外层、次外层和内层三层结构,外层为TaSi2和MoSi2相,次外层为TaSi2相和弥散分布的Ta5Si3相,内层为Ta5Si3相。涂层试样和去除涂层试样的屈服强度、抗拉强度和均匀伸长率分别为639、647 MPa、13.6%和602、675 MPa、22.7%。相比Ta10W合金基体试样,去除涂层试样的均匀伸长率增加了5.5%,其原因是涂层制备过程中的热作用消除了激光选区熔化成形Ta10W合金的残余应力。涂层试样的屈服强度增加了37 MPa,其原因是涂层的制备提高了屈服强度。涂层外层、次外层、内层和基体的硬度分别为550HV0.2、1120HV0.2、534HV0.01和307HV0.2。涂层平均结合强度高达63 MPa,远高于目前结合强度优异的陶瓷系和高熵合金系涂层。这是因为本研究中三层结构的钼-硅系高温抗氧化涂层与基体产生较好的冶金结合。
针对预曝露对多元稀土氧化物掺杂改性YSZ热障涂层Gd2O3-Yb2O3-Y2O3(GYb-YSZ)CMAS腐蚀行为的影响,通过制备标准件试样,开展三类实验:高温预曝露实验、CMAS腐蚀实验以及高温预曝露后CMAS腐蚀实验。采用扫描电子显微镜(SEM)以及纳米压痕等方法对比研究了涂层在进行上述三类实验前后微观形貌组织与基本力学特性的变化,从而讨论高温预曝露对CMAS腐蚀的影响。实验结果表明,短时预曝露处理会引起多通道渗透,长时预曝露处理会导致纵向贯穿裂纹发生。对于980 ℃或1050 ℃预曝露处理125 h会降低CMAS渗透效果。当温度达到1150 ℃时,CMAS以熔融态渗入陶瓷层中,在冷却过程中,CMAS重新凝固导致柱状晶间隙膨胀形成垂直裂纹,直至贯穿陶瓷层,加速涂层剥落;同时,CMAS腐蚀后样品涂层的杨氏模量约增加48%,硬度约增加50%。因此,经过980 ℃或1050 ℃预曝露处理125 h的试样具有明显的抗CMAS腐蚀的效果。
以固相烧结法制备的Yb2Si2O7粉体作为原材料,采用大气等离子喷涂工艺在SiC基体表面制备Si/Mullite+BSAS/Yb2Si2O7三层结构环境障涂层。利用扫描电子显微镜、能谱仪、X射线衍射分析仪、纳米压痕试验机等设备研究涂层的显微组织、相结构和力学性能。结果表明:粉体材料由83% Yb2Si2O7相和17% Yb2SiO5相(质量分数)组成,等离子喷涂获得的Yb2Si2O7层孔隙率为(6.61±0.65)%,涂层结合强度达(22.82±3.55) MPa,涂层断裂韧度达(1.98±0.12) MPa·m1/2。此外,涂层1350 ℃条件下水氧耦合腐蚀测试结果显示Yb2Si2O7单斜相含量先降低后提高,硅黏结层高温氧化形成的热生长氧化物SiO2与Mullite+BSAS界面相容,未发现Mullite+BSAS与Yb2Si2O7层互扩散现象,硅层的损耗是涂层使用寿命的主要限制环节。
微波吸收涂层结构设计和电性能模拟计算在微波吸收涂层制备过程中起到越来越重要的作用。针对涂层结构设计和优化,能直接提升涂层吸收效果。微波吸收材料往往具有阻抗匹配层、吸收层、黏结层多层结构,其反射系数由厚度、磁导率和介电常数共同决定。单纯依靠实验来研究反射系数的影响规律,工作量必然相对宽泛且盲目。基于此,选用三种微波吸收涂层吸收剂,开展电磁参数测试与分析。设定涂层材料厚度为1.2 mm,分别模拟计算单一吸收剂的单层电磁性能、两种吸收剂复配的单层和双层结构电磁性能。通过理论计算得到四种较优的涂层设计方案,并完成电性能实验验证。结果表明,采用实验验证的电性能与模拟计算结果的趋势基本相符,最终确定吸收剂A∶吸收剂C=2∶1复配单层涂层配方方案,此时微波吸收涂层模拟计算和实验结果均具有较好的吸收效果。
随着碳化硅陶瓷基复材制备的涡轮外环的逐步应用,与其匹配的可磨耗涂层技术需求迫切。本工作采用大气等离子喷涂技术,制备4层结构的BSAS(Ba0.75Sr0.25Al2Si2O8)-聚酯基可磨耗环境障涂层(A/EBCs),探究工艺参数对可磨耗面层孔隙率的影响规律以及涂层在1300 ℃下的相结构和组织演变。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、透射电镜(TEM)对涂层相结构、微观组织及成分进行分析表征。结果表明:BSAS-聚酯基可磨耗面层的孔隙率为26.4%~36.8%,BSAS-聚酯粒子温度敏感的参量是主气(氩气)流量、辅气(氢气)流量和喷涂距离,速度敏感的参量是主气(氩气)流量;其中主气(氩气)流量同时对BSAS-聚酯的粒子温度和速度具有反向影响作用。该可磨耗面层在1300 ℃高温氧化300 h保持单斜相结构,组织和成分稳定,局部析出球状非晶氧化硅颗粒。采用高温高速刮削实验对涂层可磨耗性能进行评价,涂层表面发现纳米高温合金微粒黏附,叶片高度磨损比(IDR)为20%,达到可磨耗封严涂层使用要求。
使用TWL12+TWL20无机盐铝涂层喷涂于镍基粉末高温合金表面,采用XRD、SEM、EPMA和TEM研究无机盐铝涂层与粉末高温合金经700、750、800 ℃高温氧化后的组织变化。结果表明:高温氧化后涂层表层结构出现剥落,涂层中的铝与基体合金发生扩散,形成由氧化区、扩散区、互扩散区组成的过渡层,其中氧化区为最外层,该区域主要富集O、Al元素,形成Al2O3层;随之的扩散区主要含有Ni、Al元素,形成NiAl相及在其中弥散分布的α-Cr相;最后是富集Ti、Cr、Co、Ta等元素的互扩散区,存在于扩散区与基体之间,主要由Ni2AlTi相基体及在其中弥散分布的σ相组成;分析表明过渡层厚度随着氧化温度升高而变化,主要表现为互扩散区宽度增加,扩散区中的α-Cr相与互扩散区的σ相尺寸增大,且σ相沿垂直过渡区方向生长的趋势加剧;氧化增重曲线表明,涂层表层结构脱落后,过渡层在750、800 ℃高温氧化过程中表现出良好的抗氧化性能,说明TWL12+TWL20无机盐铝涂层具有为航空发动机用先进粉末高温合金提供高温氧化涂层保护的潜力。
为探究NiCrAl-NiC封严涂层在高温熔盐环境下的腐蚀行为,使用大气等离子喷涂技术制备NiCrAl-NiC封严涂层。通过测量NiCrAl-NiC封严涂层的失重情况研究涂层的动力学变化,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、激光共聚焦显微镜等方法,探讨NiCrAl-NiC封严涂层在650 ℃下混合硫氯酸盐(75% Na2SO4 + 25% NaCl)中的热腐蚀行为。结果表明:在进行10 h的热腐蚀实验后,NiCrAl-NiC封严涂层呈现出快速增重状态,增重速率为32.041 mg2·cm−4·h−1。在进行20 h的热腐蚀实验后,涂层由于表面氧化膜的脱落而发生减重现象。在热腐蚀进行了30 h后,涂层表面膜的生长覆盖了整个涂层,涂层表面形貌均匀,表面孔隙减少,可以对基体起到很好的保护作用。在完整的氧化膜的保护作用下,进行了40 h热腐蚀实验的NiCrAl-NiC封严涂层的质量变化速率为0.064 mg2·cm−4·h−1;通过XRD测试探究涂层热腐蚀后氧化膜的组成,发现热腐蚀后涂层表面的氧化膜以NiO和NiCr2O4为主。在热腐蚀过程中,尖晶石结构的NiCr2O4对涂层的热腐蚀起到了阻碍作用,是涂层腐蚀进程缓慢的主要原因。
分析目前国际燃气轮机制造商和维修商常用的3种Al含量高于8%(质量分数) 的MCrAlY金属黏结层对HVOF-MCrAlY+APS-纳米结构YSZ(nYSZ)热障涂层在室温至1150 ℃之间的热循环行为的影响。HVOF-A386-2.5+APS-nYSZ的平均热循环寿命最高,HVOF-A9624+APS-nYSZ的平均热循环寿命最低,但是三者差别并不十分明显。3种HVOF-MCrAlY+APS-nYSZ热障涂层在热循环环境中的失效方式与传统的HVOF-MCrAlY+APS-YSZ(mYSZ)的失效方式完全相同,主要是由于nYSZ/mYSZ和mYSZ/mYSZ界面开裂引起在靠近APS-YSZ/HVOF-MCrAlY界面的APS-nYSZ层中的裂纹扩展与合并。HVOF-A9624表面的TGO生长速率最高,HVOF-A386-2.5表面的TGO生长速率最低,但是三者差别并不明显。由此可知,可以通过以下方式改善HVOF-MCrAlY+APS-nYSZ热障涂层热循环寿命:增加HVOF-MCrAlY的表面粗糙度以改善APS-nYSZ/HVOF-MCrAlY界面的结合强度;提高APS-nYSZ层中的YSZ/YSZ界面的结合力以避免YSZ/YSZ界面和APS-nYSZ外表面的开裂;控制HVOF-MCrAlY中的Al含量、添加适量能够减缓扩散速率的合金元素,以降低TGO生长速率和防止生成大量的CSN混合氧化物,或能减缓热障涂层中的裂纹扩展。